Cho phân số A=\(\frac{2012}{x-99}\).Tìm x\(\in\)\(ℤ\)để A có GTLN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
đến đây bn liệt kê ước của 3 r` lm tiếp!
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
=> n-2 là số nguyên dương nhỏ nhất
=> n-2 = 1
=> n = 3
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)
Ta có : 5n + 8 : 3 - 2n
3 - 2n : 3 - 2n
=> 2.(5n + 8 ) : 3 - 2n
5.(3 - 2n ) : 3 - 2n
=> 10n + 16 : 3 - 2n (1)
15 - 10n : 3 - 2n (2)
Từ (1) và (2) => (10n + 16) - (15 - 10n) : 3 - 2n
=> 10n + 16 - 15 + 10n : 3 - 2n
=> 1 : 3 - 2n
Ta có bảng sau :
3 - 2n | -1 | 1 |
n | 1 | 2 |
nhận xét | Chọn | chọn |
\(C=\frac{x^2-1}{x+1}\inℤ\Leftrightarrow x^2-1⋮x+1\)
\(\Rightarrow x\cdot x+x-x-1⋮x+1\)
\(\Rightarrow x\left(x+1\right)-x-1⋮x+1\)
\(x\left(x+1\right)⋮x+1\)
\(\Rightarrow x-1⋮x+1\)
\(\Rightarrow x+1-2⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)\)
\(x\inℤ\Rightarrow x+1\inℤ\)
\(\Rightarrow x+1\in\left\{-1;1;-2;2\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)
Để A có GTLN thì mẫu số có giá trị nhỏ nhất
=> x - 99 =1
=> x = 100
P/s : làm liều đừng chép chờ kiểm duyệt :)
Học tốt~