K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

giúp mình với

 

30 tháng 12 2021

b: để hai đường cắt nhau tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}m^2-7=2\\m-1< >2\end{matrix}\right.\Leftrightarrow m=-3\)

8 tháng 2 2021

a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)

\(\Leftrightarrow m\ne3\)

b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)

\(\Leftrightarrow m>3\)

Vậy ...

c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0 

\(\Leftrightarrow a>0\)

\(\Leftrightarrow3-m>0\)

\(\Leftrightarrow m< 3\)

Vậy ...

 

a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)

hay \(m\ne3\)

b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)

\(\Leftrightarrow m>3\)

c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0

hay m<3

27 tháng 5 2017

Bài 1: 

a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)

b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0

hay k>2

Bài 2: 

Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:

\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)

\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)

\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)

\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)

hay \(m=\dfrac{1}{3}\)

12 tháng 1 2017

Chọn đáp án D

Hàm số xác định khi 

Do đó hàm số đã cho xác định trên 0 ; + ∞

19 tháng 5 2017

Đáp án A

T X D : D = ℝ \ 1  

Ta có:  y = m x 2 − m + 2 x + m 2 − 2 m + 2 x − 1 = m x − 2 + m 2 − 2 m x − 1 ⇒ y ' = m − m 2 − 2 m x − 1 2

hàm số luôn đồng biến trên tập xác định của nó khi y ' ≥ 0 ∀ x ∈ D  (dấu bằng xảy ra tại hữu hạn điểm)

⇔ m − m 2 − 2 m x − 1 2 ≥ 0 ∀ x ∈ D ⇔ x x − 1 2 ≥ m 2 − 2 m ∀ x ∈ D

Với m = 0 ⇒ y ' = 0 ∀ x ∈ D  (không thỏa mãn dấu bằng xảy ra tại hữu hạn điểm)

Khi đó hàm số luôn đồng biến trên tập xác định m > 0 m 2 − 2 m ≤ 0 ⇔ 0 < m ≤ 2  

26 tháng 12 2020

2) Để (d) đi qua A(2;8) thì Thay x=2 và y=8 vào hàm số \(y=\left(m^2-2m+3\right)x-4\), ta được: 

\(\left(m^2-2m+3\right)\cdot2-4=8\)

\(\Leftrightarrow2m^2-4m+6-4-8=0\)

\(\Leftrightarrow2m^2-4m-6=0\)

\(\Leftrightarrow2m^2-6m+2m-6=0\)

\(\Leftrightarrow2m\left(m-3\right)+2\left(m-3\right)=0\)

\(\Leftrightarrow\left(m-3\right)\left(2m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\2m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\2m=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Vậy: Để (d) đi qua A(2;8) thì \(m\in\left\{3;-1\right\}\)