Tìm GTNN của biểu thức:C=x^2-2x-5 với 3<x<5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = -x^2 - 2x + 3 = - ( x^2 + 2x - 3 )
= - ( x^2 + 2x + 1 - 4 ) = -( x + 1 )^2 + 4 =< 4
Dấu ''='' xảy ra khi x = -1
Vậy GTLN C là 4 khi x = -1
D = -x^2 - 3x + 7 = - ( x^2 + 3x - 7 )
=- ( x^2 + 2.3/2.x+ 9 /4 - 37 / 4 )
= - ( x + 3/2 )^2 + 37/4 =< 37/4
Dấu ''='' xảy ra khi x = -3/2
Vậy GTLN D là 37/4 khi x = -3/2
Để đa thức \(C\left(x\right),D\left(x\right)\) có nghiệm thì \(C\left(x\right)=0,D\left(x\right)=0\)
Do đó : \(C\left(x\right)=\left(\dfrac{1}{2}\right)^3-2x=0\)
\(\Rightarrow\dfrac{1}{8}-2x=0\)
\(\Rightarrow2x=\dfrac{1}{8}\)
\(\Rightarrow x=\dfrac{1}{8}:2=\dfrac{1}{16}\)
Vậy \(x=\dfrac{1}{16}\) là nghiệm của đa thức \(C\left(x\right)\)
\(D\left(x\right)=2x^2-5x-7=0\)
\(\Rightarrow2x^2+2x-7x-7=0\)
\(\Rightarrow2x\left(x+1\right)-7\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(2x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;\dfrac{7}{2}\right\}\) là nghiệm của đa thức \(D\left(x\right)\)
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
\(VT=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\left(x-y\right)^2\left(x+y\right)^2=VP\)
VT\(=\left(x^2+y^2-2xy\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)
a)Ta thấy:
\(-\left|\frac{1}{3}x+2\right|\le0\)
\(\Rightarrow5-\left|\frac{1}{3}x+2\right|\le5-0=5\)
\(\Rightarrow B\le5\)
Dấu "=" xảy ra khi x=-6
Vậy MaxB=5<=>x=-6
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Ta có:
\(\left|\frac{1}{2}x-3\right|+\left|\frac{1}{2}x+5\right|\ge\left|\frac{1}{2}x-3+5-\frac{1}{2}x\right|=2\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
Vậy MinC=2<=>x=6 hoặc -10
Vì \(3< x< 5\)
\(\Rightarrow x=4\)
Ta có : \(C=x^2-2x-5\)
\(=x^2-2x.1+1^2-1^2-5\)
\(=x^2-2x.1+1-1-5\)
\(=\left(x^2-2x.1+1\right)-1-5\)
\(=\left(x-1\right)^2-6\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2-6\ge6\)
Vậy C đạt GTNN <=> x=1