Tìm x biết :\(\left(x-3\right)^{10}=\left(x-3\right)^{30}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(x^3+5\) < \(x^3+10\) < \(x^3+15\) < \(x^3+30\)
Nếu có 1 thừa số âm : \(x^3+5
Để (x3 + 5) . (x3 + 10) . (x3 + 15) x (x3 + 30) < 0
Mà x3 + 5 < x3 + 10 < x3 + 15 < x3 + 30 nên
<=> x3 + 5 < 0 => x3 < -5 => x \(\le\) -2
hoặc x3 + 5 < 0 và x3 + 10 < 0 và x3 + 15 < 0
=> x3 + 15 < 0 => x3 < -15 => x \(\le-3\)
Vậy \(x\le2\) với \(x\in Z\)
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow x+34-x-3=x\)
\(\Leftrightarrow x=31\)
\(ĐKXĐ\): \(x\ne-3\); \(x\ne-10\); \(x\ne-21\); \(x\ne-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Leftrightarrow\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Leftrightarrow x+34-x-3=x\)
\(\Leftrightarrow x=31\)( thỏa mãn )
Vậy \(x=31\)
Ta có: \(\frac{3}{\left(x+2\right)\left(x+5\right)}=\frac{1}{x+2}-\frac{1}{x+5}\); \(\frac{5}{\left(x+5\right)\left(x+10\right)}=\frac{1}{x+5}-\frac{1}{x+10}\)
\(\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{1}{x+10}-\frac{1}{x+17}\);
=> Phương trình tương đương:
\(\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)<=> \(\frac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
<=> \(\frac{15}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)
=> x=15
Đáp số: x=15
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
\(\left(x-3\right)^{10}=\left(x-3\right)^{30}\)
\(\Leftrightarrow\left(x-3\right)^{30}-\left(x-3\right)^{10}=0\)
\(\Leftrightarrow\left(x-3\right)^{10}.\left[\left(x-3\right)^{20}-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^{10}=0\\\left(x-3\right)^{20}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\end{matrix}\right.\)
Vậy..
Thật sự rất cảm ơn đấy ạ!