Lạy ông đi qua bạn bà đi lại giúp con bài này:\(CMR:2\left(a^2+b^2\right)>\left(a+b\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) n2(n + 1) + 2n(n + 1)
= (n2 + 2n)(n + 1)
= n(n + 2)(n + 1) chia hết cho 6 vì là 3 số tự nhiên liên tiếp
b) (2n - 1)3 - (2n - 1)
= (2n - 1).[(2n - 1)2 - 1]
= (2n - 1).{ [ (2n - 1) + 1] . [ (2n - 1) -1 ] }
= *2n - 1) . 2n . (2n - 2) chia hết cho 8 vì là 3 số chẵn liên tiếp
c) (n + 2)2 - (n - 2)2
= n2 + 4n - 4 - (n2 - 4n + 4)
= n2 + 4n - 4 - n2 + 4n - 4
= 8n - 8 chia hết cho 8
\(1,01\times ab=2b,a3\)
Ta có : \(101\times ab=2ba3\)( cùng nhân với 100 )
\(\Rightarrow abab=2ba3\)
Ta thấy : \(a=2;b=3\)
Vậy \(ab=23\)
1) (a+b).(a+b)=a^2+ab+ba+b^2
=a^2+2ab+b^2
2)(a-b)^2=(a-b).(a-b)=a^2-ab-ab+b^2=a^2-2ab+b^2
3)(a+b).(a-b)=a^2-ab+ba-b^2=a^2-b^2
Chữ Shin còn viết sai nữa à Tiểu Shyn?????????????????????????????????????????????????????????????????????????????\ ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
K na
a/ Khi \(m=5\Leftrightarrow\left(d\right):y=6x-5\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\) là :
\(x^2=6x-5\)
\(\Leftrightarrow x^2-6x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}M\left(5;25\right)\\N\left(1,1\right)\end{matrix}\right.\) là giao điểm của \(\left(P\right)\) và \(\left(d\right)\) khi \(m=5\)
b/ Phương trình hoành độ giao điểm của \(\left(P\right);\left(d\right)\) là :
\(x^2=\left(m+1\right)x-m\)
\(\Leftrightarrow x^2-\left(m+1\right)+m=0\)
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m+1\right)^2\ge0\)
Để pt có 2 nghiệm pb \(\Leftrightarrow m\ne-1\)
Ta có :
\(y_1-y_2=4\)
\(\Leftrightarrow x_1^2-x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=4\)
Theo định lí Viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1.x_2=m\end{matrix}\right.\)
\(\Leftrightarrow x_1-x_2=\dfrac{4}{m+1}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow x_1^2+x_2^2-2x_1.x_2=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1.x_2=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2-4m=\dfrac{16}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m-1\right)^2.\left(m+1\right)^2=16\)
\(\Leftrightarrow\left(m^2-1\right)^2=16\)
\(\Leftrightarrow m^2-1=\pm4\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2=3\\m^2=-3\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow m=\pm\sqrt{3}\)
Vậy..
Theo đề ra ta có hệ :
\(\left\{{}\begin{matrix}\dfrac{4}{a^2}=1\\\dfrac{1}{a^2}+\dfrac{\dfrac{3}{4}}{b^2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\\dfrac{\dfrac{3}{4}}{b^2}=\dfrac{3}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy (a,b) = (2,1)
+,Ta có :A thuộc E => thay x=2 và y=0 vào E ta đc a^2=4 => a=2 (loại a=-2 vì a<0 )
+, Tương tự thay B vào E => 3b^2=3 =>b=1(loại b=-1 vì b <0)
=> vậy a =2 b =1
học tốt ! :)))
Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\)
Theo đề, ta có: \(\dfrac{a}{b}=\dfrac{34}{119}\)
=>\(\dfrac{a}{b}=\dfrac{2}{7}\)
=>\(\dfrac{a}{2}=\dfrac{b}{7}\)
BCNN(a;b)=126
=>\(\left\{{}\begin{matrix}a⋮126\\b⋮126\end{matrix}\right.\)
=>a=126:7=18; b=126:2=63
=>Phân số cần tìm là \(\dfrac{18}{63}\)
(a + b) 2= a2 + 2ab + b2
=> ...
Có sai đề không bạn?
mk c/m nhưng có dấu \(\ge\)