cho a,b,c >0
CMR \(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ca}+\frac{c^2}{ca+cb}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
\(\RightarrowĐPCM\)
Đặt \(f\left(a,b,c\right)=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)và \(t=\frac{a+b}{2}\)
Khi đó thì \(f\left(t,t,c\right)=\frac{t}{t+c}+\frac{t}{t+c}+\frac{c}{2t}=\frac{2t}{t+c}+\frac{c}{2t}\)
Ta có: \(f\left(a,b,c\right)=\frac{\left(a^2+b^2\right)+c\left(a+b\right)}{c^2+ab+c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{4\left(a^2+b^2\right)+4c\left(a+b\right)}{4c^2+4ab+4c\left(a+b\right)}+\frac{c}{a+b}\)
\(\ge\frac{2\left(a+b\right)^2+4c\left(a+b\right)}{4c^2+\left(a+b\right)^2+4c\left(a+b\right)}+\frac{c}{a+b}\)\(=\frac{8t^2+8tc}{4c^2+4t^2+8tc}+\frac{c}{2t}\)
\(=\frac{2t^2+2tc}{c^2+t^2+2tc}+\frac{c}{2t}=\frac{2t\left(t+c\right)}{\left(t+c\right)^2}+\frac{c}{2t}\)\(=\frac{2t}{t+c}+\frac{c}{2t}=f\left(t,t,c\right)\)
Do đó \(f\left(a,b,c\right)\ge f\left(t,t,c\right)\)
Ta cần chứng minh: \(f\left(t,t,c\right)=\frac{2t}{t+c}+\frac{c}{2t}\ge\frac{3}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(t-c\right)^2}{2t\left(t+c\right)}\ge0\)(đúng)
Đẳng thức xảy ra khi a = b = c
Cauchy Schwarz dạng Engel là nhanh nhất !
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ca}+\frac{b^2}{ab+bc}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2\cdot\frac{\left(a+b+c\right)^2}{3}}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c
Cách khác:
Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{a}{b+c}+1\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(\ge\left(a+b+c\right)\cdot\frac{9}{2\left(a+b+c\right)}-3\)
\(=\frac{9}{2}-3=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c
Xét hiệu:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{a}-\frac{c}{b}-\frac{a}{c}=\frac{a-c}{b}+\frac{b-a}{c}+\frac{c-b}{a}\)
\(=\frac{ca.\left(a-c\right)}{abc}+\frac{ab.\left(b-a\right)}{abc}+\frac{bc.\left(c-b\right)}{abc}\)\(=\frac{a^2c-c^2a}{abc}+\frac{b^2a-a^2b}{abc}+\frac{c^2b-b^2c}{abc}\)
\(=\frac{a^2c-c^2a+b^2a-a^2b+c^2b-b^2c}{abc}\)\(=\frac{\left(a^2c-b^2c\right)+\left(-c^2a+c^2b\right)+\left(b^2a-a^2b\right)}{abc}\)
\(=\frac{c.\left(a-b\right)\left(a+b\right)-c^2.\left(a-b\right)-ab.\left(a-b\right)}{abc}\)\(=\frac{\left(a-b\right)\left[c.\left(a+b\right)-c^2-ab\right]}{abc}\)
\(=\frac{\left(a-b\right)\left(ac+bc-c^2-ab\right)}{abc}\)\(=\frac{\left(a-b\right)\left[\left(ac-c^2\right)+\left(bc-ab\right)\right]}{abc}\)
\(=\frac{\left(a-b\right)\left[c.\left(a-c\right)-b.\left(a-c\right)\right]}{abc}\)\(=\frac{\left(a-b\right)\left(a-c\right)\left(c-b\right)}{abc}\)
ta thấy \(a\ge b\ge c>0\Rightarrow abc>0\)
\(a-b\ge0\left(a\ge b\right);a-c\ge0\left(a\ge b\ge c\right);c-b\le0\left(b\ge c\right)\)\(\Rightarrow\left(a-b\right)\left(a-c\right)\left(c-b\right)\le0\)
\(\text{Suy ra: }\frac{\left(a-b\right)\left(a-c\right)\left(c-b\right)}{abc}\le0\)
\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\le\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
có thể sai đề
https://olm.vn/hoi-dap/detail/263385033080.html . Tham khảo Inequalities.