Tìm y
a) 2y(y-1)-y(-4+2y)+4=0
b) (2y+3)(y+2)-(y-4)(2y-1)=18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}\left|x-3y\right|\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y=-12\\y=-4\end{matrix}\right.\)
\(b,Sửa:\left|x-y-5\right|+\left(y+3\right)^2=0\\ \left\{{}\begin{matrix}\left|x-y-5\right|\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-y-5=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+5=2\\y=-3\end{matrix}\right.\)
\(c,\left\{{}\begin{matrix}\left|x+y-1\right|\ge0\\\left(y-2\right)^4\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-y=-1\\y=2\end{matrix}\right.\)
\(d,\left\{{}\begin{matrix}\left|x+3y-1\right|\ge0\\3\left|y+2\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+3y-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-3y=7\\y=-2\end{matrix}\right.\)
\(e,Sửa:\left|2021-x\right|+\left|2y-2022\right|=0\\ \left\{{}\begin{matrix}\left|2021-x\right|\ge0\\\left|2y-2022\right|\ge0\end{matrix}\right.\Rightarrow VT\ge0\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}2021-x=0\\2y-2022=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2021\\y=1011\end{matrix}\right.\)
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
1)\(n^2\left(n-1\right)\left(n+1\right)-\left(n^2+2\right)\left(n^2-2\right)=n^2\left(n^2-1\right)-\left(n^4-4\right)=n^4-n^2-n^4+4\)
\(=-n^2+4\)
2)\(\left(y+3\right)\left(y-3\right)\left(y^2+9\right)-\left(y^2-4\right)\left(y^2+4\right)=\left(y^2-9\right)\left(y^2+9\right)-\left(y^4-16\right)\)
\(=y^4-81-y^4+16=-65\)
3)\(\left(x-2y+3\right)\left(x+2y-3\right)-\left(x-2y\right)\left(x+2y\right)=\left(x+3\right)^2-4y^2-\left(x^2-4y^2\right)\)
\(=x^2+6x+9-4y^2-x^2+4y^2=6x+9\)
4)\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
5)\(\left(a+b-c\right)^2=a^2+b^2+c^2+2ab-2bc-2ac\)
6)\(\left(a-b-c\right)^2=a^2+b^2+c^2-2ab+2bc-2ac\)
Học tốt nha bạn !
b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)
\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)
= 3 ( vì x-y = 0)
Câu 1 :
\(3\left(x-3\right)\left(x+7\right)+\left(1-4\right)\left(x+4\right)+18\)
\(=3\left(x^2+4x-21\right)-3\left(x+4\right)\)
\(=3x^2+12x-63-3x-12=3x^2+9x-75\)
Thay x = 1/2 vào ta được
\(\dfrac{3.1}{4}+\dfrac{9}{2}-75=-\dfrac{279}{4}\)
Câu 2 :
\(5x^2+5xy+5x=5x\left(x+y+1\right)\)
Thay x = 60 ; y = 50 ta được
\(300\left(60+50+1\right)=33300\)
Câu 3 :
\(4x^2y^2+2xy^2+6x^2y=2xy\left(2xy+y+3x\right)\)
Thay x = 10 ; y = 1/2 ta được
\(\dfrac{2.10.1}{2}\left(\dfrac{2.10.1}{2}+\dfrac{1}{2}+30\right)=405\)
1: \(=3\left(x^2+4x-21\right)+x^2-16+18\)
\(=3x^2+12x-63+x^2+2\)
\(=4x^2+12x-61\)
\(=4\cdot\dfrac{1}{4}+12\cdot\dfrac{1}{2}-61=1-61+6=-54\)
2: \(=5\cdot60^2+5\cdot60\cdot50+5\cdot60=33300\)
3: \(=4\cdot10^2\cdot\dfrac{1}{4}+2\cdot10\cdot\dfrac{1}{4}+6\cdot100\cdot\dfrac{1}{2}=405\)
\(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\)( vô lý)
Vậy \(S=\varnothing\)
b: \(\left|x-3\right|+\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=3\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
b)\(\left(2y+3\right)\left(y+2\right)-\left(y-4\right)\left(2y-1\right)=18\)
⇒\(2y^2+4y+3y+6-2y^2+y+8y+4=18\)
⇒16y+10=18
⇒16y=28
⇒y=\(\dfrac{7}{4}\)
a)\(2y\left(y-1\right)-y\left(-4+2y\right)+4=0\)
⇒\(2y^2-2y+4y-2y+4=0\)
⇒2y+4=0
⇒2y=-4
⇒y=-2