K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(\Rightarrow\left(5x-2\right)\left(6x-2\right)=\left(3x+1\right).13\)

\(\Leftrightarrow30x^2-10x-12x+4=39x+13\)

\(\Leftrightarrow30x^2-61x-9=0\)

15 tháng 12 2018

\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)

15 tháng 12 2018

\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)

\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)

\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)

==>Sai đề không mem

5 tháng 12 2018

1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)\(\frac{6x}{3xy}\)=\(\frac{3}{y}\)

2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1

3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)

4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)

5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)

=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)

21 tháng 7 2019

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

= \(\frac{3x\left(x-y\right)}{5.2.\left(x+y\right)\left(x-y\right)}-\frac{x\left(x+y\right)}{10\left(x^2-y^2\right)}\)

= \(\frac{3x^2-3xy-x^2-xy}{10\left(x^2-y^2\right)}\)

= \(\frac{3x\left(x-y\right)}{10\left(x^2-y^2\right)}\)

= \(\frac{3x}{10\left(x+y\right)}\)

3 tháng 4 2016

Sau khi rút gọn thì ta được \(A=x\left(2x+3\right)\)

                                  \(\Leftrightarrow A=2x^2+3x\)

                                  \(\Leftrightarrow A=2\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)-2.\frac{9}{4}\)

                                  \(\Leftrightarrow A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(2\left(x+\frac{3}{2}\right)^2\ge0\) nên \(2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Do đó \(A=2\left(x+\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(2\left(x+\frac{3}{2}\right)^2=0\)

                       \(\Leftrightarrow\)\(\left(x+\frac{3}{2}\right)^2=0\)

                       \(\Leftrightarrow\)\(x+\frac{3}{2}=0\)

                       \(\Leftrightarrow\)\(x=\frac{-3}{2}\)

\(VậyMinA=\frac{-9}{2}tạix=\frac{-3}{2}\)

13 tháng 11 2019

@Nguyễn Việt Lâm em sắp ktra, anh giúp em bài này với ạ ....

13 tháng 11 2019

Akai Haruma giúp em giải phương trình trên được ko ạ ^_^

a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)

c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)

d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)

4 tháng 8 2020

em cảm ơn nhiều ạ

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

f)

$\frac{3x^2-2x}{x^2-1}.\frac{1-x^4}{(2-3x)^3}$

$=\frac{2x-3x^2}{x^2-1}.\frac{x^4-1}{(2-3x)^3}=\frac{x(2-3x)(x^2-1)(x^2+1)}{(x^2-1)(2-3x)^3}$

$=\frac{x(x^2+1)}{(2-3x)^2}$
g)

$\frac{5xy}{2x-3}:\frac{15xy^3}{12-8x}=\frac{5xy}{2x-3}.\frac{12-8x}{15xy^3}$

$=\frac{5xy}{2x-3}.\frac{-4(2x-3)}{15xy^3}=\frac{-4}{3y^2}$

h)

$\frac{x^2+2x}{3x^2-6x+3}:\frac{2x+4}{5x-5}=\frac{x(x+2)}{3(x-1)^2}:\frac{2(x+2)}{5(x-1)}$

$=\frac{x(x+2)}{3(x-1)^2}.\frac{5(x-1)}{2(x+2)}$

$=\frac{5x}{6(x-1)}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

d)

$\frac{x+8}{x^2-16}-\frac{2}{x^2+4x}=\frac{x+8}{(x-4)(x+4)}-\frac{2}{x(x+4)}$

$=\frac{x(x+8)}{x(x-4)(x+4)}-\frac{2(x-4)}{x(x+4)(x-4)}$

$=\frac{x^2+8x-2(x-4)}{x(x+4)(x-4)}=\frac{x^2+6x+8}{x(x+4)(x-4)}$

$=\frac{(x+2)(x+4)}{x(x+4)(x-4)}=\frac{x+2}{x(x-4)}$
e)

$\frac{x^2-49}{2x+1}.\frac{3}{7-x}=\frac{(x-7)(x+7)}{2x+1}.\frac{-3}{x-7}$

$=\frac{-3(x+7)}{2x+1}$