Giải pt: sin ( 3x/4 - π/6 ) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2}cos4x=\dfrac{1}{2}+\dfrac{1}{2}cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow-cos4x=cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow cos\left(4x-\pi\right)=cos\left(2x-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\pi=2x-\dfrac{\pi}{2}+k2\pi\\4x-\pi=\dfrac{\pi}{2}-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{3}\)
2.
\(\Leftrightarrow1-cos^2x+1-sin^24x=2\)
\(\Leftrightarrow cos^2x+sin^24x=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx=0\\sin4x=0\end{matrix}\right.\)
\(\Leftrightarrow cosx=0\)
\(\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\)
a) \(cos\left(4x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\Rightarrow cos\left(4x+\dfrac{\pi}{3}\right)=cos\dfrac{\pi}{6}\)
\(\Rightarrow\left[{}\begin{matrix}4x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\4x+\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
..... bạn tự tìm x nhé!
b)\(sin^2x-3sin3x+2=0\)\(\Rightarrow sin^2x-3\left(3sinx-4sin^3x\right)+2=0\)
\(\Rightarrow12sin^3x+sin^2x-9sinx+2=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\dfrac{2}{3}\\sinx=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow\).... bạn tự tìm x nhé!
c)\(tan\left(2x+10^o\right)=\sqrt{3}\Rightarrow tan\left(2x+10^o\right)=tan60^o\)
\(\Rightarrow2x+10^o=60^o+k180^o\)
\(\Rightarrow x=25^o+k90^o\left(k\in Z\right)\)
d) \(tanx\cdot cot2x=1\)
Đk: \(\left\{{}\begin{matrix}cosx\ne0\\sin2x\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+m\pi\\x\ne m\dfrac{\pi}{2}\end{matrix}\right.\)
Pt: \(\Rightarrow tanx=tan2x\Rightarrow x=2x+k\pi\)
\(\Rightarrow x=k\pi\)
Đối chiếu với đk trên thỏa mãn đk\(\Rightarrow x=k\pi\)
cos 5x-sin(3x+pi)=0
=>sin(3x+pi)=cos5x
=>sin(3x+pi)=sin(pi/2-5x)
=>3x+pi=pi/2-5x+k2pi hoặc 3x+pi=pi/2+5x+k2pi
=>8x=-pi/2+k2pi hoặc -2x=-pi/2+k2pi
=>x=-pi/16+kpi/4 hoặc x=pi/4-kpi
\(cos\cdot\left(3x-\dfrac{\pi}{6}\right)=sin\cdot\left(x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow cos\cdot\left(3x-\dfrac{\pi}{6}\right)=cos\cdot\left(\dfrac{\pi}{4}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{6}=\dfrac{\pi}{4}-x+k2\pi\\3x-\dfrac{\pi}{6}=\dfrac{-\pi}{4}+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=\dfrac{5\pi}{12}+k2\pi\\2x=\dfrac{-\pi}{12}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{48}+\dfrac{k\pi}{2}\\x=\dfrac{-\pi}{24}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
\(\Leftrightarrow sin^3x+3sin^2x+3sinx+1-cos^3x+sinx-cosx+1=0\)
\(\Leftrightarrow\left(sinx+1\right)^3-cos^3x+sinx-cosx+1=0\)
\(\Leftrightarrow\left(sinx-cosx+1\right)\left[\left(sinx+1\right)^2+cosx\left(sinx+1\right)+cos^2x\right]+sinx-cosx+1=0\)
\(\Leftrightarrow\left(sinx-cosx+1\right)\left(2sinx+sinx.cosx+cosx+2\right)+sinx-cosx+1=0\)
\(\Leftrightarrow\left(sinx-cosx+1\right)\left(2sinx+cosx+sinx.cosx+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=-1\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\Leftrightarrow...\\2sinx+cosx+sinx.cosx+3=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow2\left(sinx+1\right)+cosx\left(sinx+1\right)+1=0\)
\(\Leftrightarrow\left(cosx+2\right)\left(sinx+1\right)+1=0\)
Do \(sinx;cosx\ge-1\Rightarrow\left(cosx+2\right)\left(sinx+1\right)\ge0\)
\(\Rightarrow\left(cosx+2\right)\left(sinx+1\right)+1=0\) vô nghiệm
\(\Leftrightarrow\dfrac{3x}{4}-\dfrac{\pi}{6}=k\pi\)
\(\Leftrightarrow\dfrac{3x}{4}=\dfrac{\pi}{6}+k\pi\)
\(\Leftrightarrow3x=\dfrac{2\pi}{3}+k4\pi\)
\(\Leftrightarrow x=\dfrac{2\pi}{9}+\dfrac{k4\pi}{3}\) (\(k\in Z\))