chứng minh bất đẳng thức
cho a,b>o
cmr a^2+b^2>=(a+b)^2
ai giúp mk với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có a2+1\(\ge\)2a,b2+1\(\ge\)2b
=>........
a/ \(a^2+b^2+2\ge2\left(a+b\right).\)
Ta có \(a^2+b^2+2-2\left(a+b\right)\)
\(=a^2+b^2+2-2a-2b\)
\(=a^2+b^2+1+1-2a-2b\)
\(=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2\)
mak ta có \(\orbr{\begin{cases}\left(a-1\right)^2\ge0\\\left(b-1\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)(đpcm)
\(BDT\Leftrightarrow\left(\frac{a}{a+b}-\frac{1}{2}\right)+\left(\frac{b}{b+c}-\frac{1}{2}\right)+\left(\frac{c}{c+a}-\frac{1}{2}\right)\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{\left(b-a\right)+\left(a-c\right)}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(a-b\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+\frac{1}{2}\left(a-c\right)\left(\frac{1}{b+c}-\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(c-a\right)\left(a-b\right)}{2\left(a+b\right)\left(b+c\right)}+\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)\left(c+a\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)}{2\left(b+c\right)}\left(-\frac{1}{a+b}+\frac{1}{c+a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(a-c\right)\left(a-b\right)\left(b-c\right)}{2\left(a+b\right)\left(a+c\right)\left(b+c\right)}\ge0\)(luôn đúng \(\forall a\ge b\ge c>0\))
Vậy BĐT đã được chứng minh
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
Ta có a2 + b2 + c2 \(\ge a\left(b+c\right)\)
<=> 2a2 + 2b2 + 2c2 \(\ge\)2a(b + c)
<=> 2a2 + 2b2 + 2c2 \(\ge\)2ab + 2ac
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac \(\ge\)0
<=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + b2 + c2 \(\ge0\)
<=> (a - b)2 + (a - c)2 + b2 + c2 \(\ge0\)(đúng)
Dấu "=" xảy ra <=> a = b = c = 0
=> BĐT được chứng minh
hình như sai đề
phải là a2+b2+2ab=>(a+b)2