đơn giản biểu thức
a,\(tan^2\)alpha.(2\(cos^2alpha+sin^2alpha-1\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề là \(A=1-2sin^2a+5cos^2a\) hay \(A=1-2sin^2a-5cos^2a\) vậy nhỉ?
\(90^0< a< 180^0\Rightarrow cosa< 0\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{5}}{3}\)
\(sin2a=2sina.cosa=-\frac{4\sqrt{5}}{9}\)
\(sin\left(a+30^0\right)=sina.cos30^0+cosa.sin30^0=\frac{2}{3}.\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{3}.\frac{1}{2}=\frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{6}\)
\(0< a< \dfrac{pi}{2}\)
=>\(sina>0\)
\(sin^2a+cos^2a=1\)
=>\(sin^2a=1-\dfrac{16}{25}=\dfrac{9}{25}\)
=>\(sina=\dfrac{3}{5}\)
\(sin2a=2\cdot sina\cdot cosa=2\cdot\dfrac{3}{5}\cdot\dfrac{4}{5}=\dfrac{24}{25}\)
=>Chọn B
a) ta có : \(sin\alpha.cos\alpha\left(tan\alpha+cot\alpha\right)=sin\alpha.cos\alpha\left(\dfrac{sin\alpha}{cos\alpha}+\dfrac{cos\alpha}{sin\alpha}\right)\)
\(=sin^2\alpha+cos^2\alpha=1\)
b) ta có : \(\left(sin^2\alpha+cos^2\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(=1^2+1-2sin\alpha.cos=2\left(1-2sin\alpha.cos\alpha\right)\)
c) ta có : \(tan^2\alpha-sin^2\alpha.tan^2\alpha=tan^2\alpha\left(1-sin^2\alpha\right)\)
\(=\dfrac{sin^2\alpha}{cos^2\alpha}.cos^2\alpha=sin^2\alpha\)
\(\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)
\(\tan^2\alpha\left(2.\cos^2\alpha+\sin^2\alpha-1\right)=\tan^2\alpha\left(\cos^2\alpha+\left(\sin^2\alpha+\cos^2\alpha\right)-1\right)\)\(=\tan^2\alpha.\cos^2\alpha=\left(\frac{1}{\cos^2\alpha}-1\right)\cos^2\alpha=1-\cos^2\alpha=\sin^2\alpha\)
\(a=\left(\frac{sina+\frac{sina}{cosa}}{cosa+1}\right)^2+1=\left(\frac{sina\left(cosa+1\right)}{cosa\left(cosa+1\right)}\right)^2+1\)
\(=tan^2a+1=\frac{1}{cos^2a}\)
\(b=\frac{sina}{cosa}\left(\frac{1+cos^2a-sin^2a}{sina}\right)=\frac{sina}{cosa}\left(\frac{2cos^2a}{sina}\right)=2cosa\)
\(c=1-\frac{cos^2a}{cot^2a}+\frac{sina.cosa}{\frac{cosa}{sina}}=1-cos^2a.\frac{sin^2a}{cos^2a}+\frac{sin^2a.cosa}{cosa}\)
\(=1-sin^2a+sin^2a=1\)
=tan2\(a\).( cos2\(a\)+ cos2\(a\) + sin2\(a\) - 1)
=tan2\(a\)( cos2\(a\)-1)