Tìm abc biết abc - bc = 2.bc
Giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMB và tam giác AMC
Có: AB=AC (gt)
AM chung
MC=MB (B là trung điểm)
=>Tam giác AMB=tam giác AMC (c.c.c)
=>Góc AMB=góc AMC (2 góc tương ứng)
=>Góc AMB=góc AMC=90 độ
=>AM vuông góc với BC (đpcm)
Đây bạn nhé, chúc học tốt!!!
Tham khảo :
14a,bc : 81 = a,bc
14a,bc : 81 x 100 = a,bc x 100
14abc : 81 = abc
14000 +abc = abc x 81
abc x 81 = 14000
abc = 14000 : 81
abc = 175
hay a,bc =1,75
Xét ΔAMB và ΔAMC, ta có:
AB = AC (gt)
BM = CM (vì M là trung điểm BC)
AM cạnh chung
Suy ra: ΔAMB= ΔAMC(c.c.c)
⇒ ∠(AMB) =∠(AMC) ̂(hai góc tương ứng)
Ta có: ∠(AMB) +∠(AMC) =180o (hai góc kề bù)
∠(AMB) =∠(AMC) =90o. Vậy AM ⏊ BC
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
a) Xét ΔADB vuông tại D và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)
Ta có: \(\widehat{ACE}+\widehat{ACB}=\widehat{ECB}\)(tia CA nằm giữa hai tia CE và CB)
\(\Leftrightarrow\widehat{ACE}+\widehat{ACB}=90^0\)(1)
Ta có: ΔECB vuông tại C(gt)
nên \(\widehat{CEB}+\widehat{CBE}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{AEC}+\widehat{ABC}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{ACE}+\widehat{ACB}=\widehat{AEC}+\widehat{ABC}\)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ACE}=\widehat{AEC}\)
Xét ΔACE có \(\widehat{ACE}=\widehat{AEC}\)(cmt)
nên ΔACE cân tại A(Định lí đảo của tam giác cân)
a, Xét tg ABD và tg EBD, có:
góc A= góc E(=90o)
BD chung.
góc ABD= góc DBE(tia phân giác)
=>tg ABD=tg EBD.(ch-gn)
b, Ta có: ^A+^B+^C=180o(Đ. L. tổng 3 góc của tg).
=>^B=180o-(^A+^B)=180o-(90o+30o)
=> góc B=60o.
=> góc ABD= góc DBE= 60o: 2=30o
=>góc DBE= góc C.
=>tg DBC cân tại D.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{BAD}\) chung
AD=AE
Do đó: ΔABD=ΔACE
b: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
a.b.xét tam giác vuông BNC và tam giác vuông CMB có:
góc B = góc C ( gt )
BC: cạnh chung
Vậy tam giác vuông BNC = tam giác vuông CMB ( cạnh huyền.góc nhọn )
=> BM = CN ( 2 cạnh tương ứng )
xét tam giác vuông AMI và tam giác vuông ANI có:
A: góc chung
AI: cạnh chung
Vậy tam giác vuông AMI = tam giác vuông ANI ( cạnh huyền. góc nhọn )
=> AM = AN ( 2 cạnh tương ứng )
=> tam giác AMN cân tại A
=> AI là tia phân giác góc BAC
c. xét tam giác vuông BMI và tam giác vuông CNI có:
BM = CN ( cmt )
BI = CI ( tam giác BNC = tam giác CMB )
Vậy tam giác vuông BMI = tam giác vuông CNI ( cạnh huyền. góc nhọn )
d. ta có: AI là phân giác cũng là đường cao trong 2 tam giác cân ABC và AMN
=> AI vuông với MN và BC
=> MN // BC ( 2 cạnh cùng vuông với một cạnh )
Chúc bạn học tốt!!!
1+2+..+bc=bc(bc+1)/2
=>bc(bc+1)=2.abc
bc^2+bc=2.abc
=>bc^2-bc=2.a00
=>bc(bc-1)=2.a00
a00 có số cuối là 0
=>bc(bc-1) có số cuối là 0
=>c=1 hoạc c=0 hoạc c=6 hoạc c=5
+với c=1 ta có b1.b0=2.a00
VT không chia hết 100 loại
+c=0 ta có b0.(b-1)9=2.a00
tuong tự loại
+c=6 ta có b6.b5=2.a00
=>b=7=>thay vào loại
+c=5 ta có b5.b4=2.a00
=>b=2 =>a=3
vậy a=3 b=2 và c=5
Vậy abc=325
\(12AB=5AC\)
nên AB/5=AC/12=k
=>AB=5k; AC=12k
Xét ΔBAC vuông tại A có \(BC^2=AB^2+AC^2\)
nên BC=13k
Xét ΔBAC vuông tại A có AH là đường cao
nên \(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow70\cdot13k=12k\cdot5k\)
\(\Leftrightarrow910k-60k^2=0\)
=>k=91/6
=>BC=1183/6
=> 100a+bc-bc=2.bc => 100a=2.bc => 50a=bc => a =1 => bc=50
Thử 150-50=2.50
ta có abc - bc = 2.bc
=> a x 100 = 2.bc
=> a x 100 : 2 = bc
=> a x 50 = bc
vì bc là số có hai chữ số => bc < 100
=> a x 50 < 100 và a > 0 ( vì a là hàng trăm)
=> 0 < a < 2
=> a = 1
thay vào ta có
a x 50 = bc
1 x 50 = 50
vậy abc = 150