\(\frac{6}{19}< \frac{ }{25}< \frac{7}{19}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các stn x đúng ko bạn?
\(a,\frac{50}{19}.\frac{38}{25}< x< \frac{69}{17}+\frac{33}{17}\)
\(4< x< 6\Rightarrow x=5\)
\(\frac{50}{19}.\frac{38}{25}< x< \frac{69}{17}+\frac{33}{17}\)
=> \(4< x< 6\)
=> x = 5
\(\frac{7}{15}< \frac{x}{40}< \frac{8}{15}\)
=> \(7.40< 15.x< 8.40\)
=> \(280< 15.x< 320\)
=> \(18< x< 22\)
=> \(x\in\left\{19;20;21\right\}\)
Đặt C\(=\frac{1}{6}+\frac{1}{7}+...+\frac{1}{19}\)
\(\)C có 13 phân số tất cả, ta chia ra như sau:
C =1/5+(1/6+....1/11)+(1/12+1/12+.....1/16 +1/17)
Vì trong nhóm I thì 1/ 6 là lớn nhất, nhóm II thì 1/12 là lớn nhất ,xuy ra:
C< 1/5 +6.1/6+6.1/12
C<1/5+ 1 +1/2
C<1+7/10<1+1=2
Vậy C<2
1/6+1/7+...1/19
=(1/6+1/7+...+1/13)+(1/14+1/15+...+1/19)< 7.1/6+6.1/14
=7/6+6/14
=67/42<84/42=2
=> 1/6+1/7+...+1/19<2
k minh nha
Có \(\frac{18}{18+19+20}>\frac{18}{18+19+20+21}\)
\(\frac{19}{18+19+21}>\frac{19}{18+19+20+21}\)
\(\frac{20}{18+19+21}>\frac{20}{18+19+20+21}\)
\(\frac{21}{18+19+21}>\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18}{18+19+20+21}+\frac{19}{18+19+20+21}+\frac{20}{18+19+20+21}+\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18+19+20+21}{18+19+20+21}\)
=>\(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>1\)
=>M>1
Còn lại mình không biết, đúng thì tick nha
Ta có \(H=\frac{7}{3}+\frac{13}{3^2}+...+\frac{605}{3^{100}}\)
\(\Leftrightarrow3H=7+\frac{13}{3}+...+\frac{605}{3^{99}}\)
\(\Rightarrow2H=7+\frac{6}{3}+\frac{6}{3^2}+...+\frac{6}{3^{99}}-\frac{605}{3^{100}}\)
\(\Leftrightarrow2H=7+6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\frac{605}{3^{100}}\)
Mà \(6\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)=3-\frac{1}{3^{99}}\)
\(\Rightarrow2H=7+3-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
\(\Leftrightarrow2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Vì\(\frac{1}{3^{99}}+\frac{605}{3^{100}}>0\)
\(\Rightarrow2H< 10\)
\(\Leftrightarrow H< 5\left(1\right)\)
Ta có \(2H=10-\left(\frac{1}{3^{99}}+\frac{605}{3^{100}}\right)\)
Mà\(\frac{1}{3^{97}}+\frac{605}{3^{98}}< 22\)
hay\(\frac{1}{3^{99}}+\frac{605}{3^{98}}< \frac{22}{9}\)
\(\Rightarrow2H>10-\frac{22}{9}=\frac{68}{9}=2\cdot\left(3+\frac{7}{9}\right)\)
\(\Rightarrow H>3+\frac{7}{9}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrowđpcm\)
\(\frac{6}{19}< \frac{8}{25}< \frac{7}{19}\)