OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a+b+c>= 0 va (a+b)(b+c)(a+c)>0. Tim GTNN cua:
\({a(b+c) \over b^2+bc+c^2}\)+ \({b(a+c) \over c^2+ac+a^2}\)+\({c(a+b) \over a^2+ab+b^2}\)
Bài 1: cho a,b,c khác đôi một\({1 \over a} + {1 \over b} + {1 \over c}= 0\)
Rút gọn các biểu thức
\(M = {1 \over a^2+2bc} + {1 \over b^2+2ac} + {1 \over c^2+2ab}\)
\(N = {bc \over a^2+2bc}+ {ca \over b^2+2ac} + {ab \over c^2+2ab}\)
Bài 2: Cho \({x \over a} + {y \over b} + {z \over c}=0 \) và \({a \over x} + {b \over y} + {c \over z}= 2\)
Chứng Minh Rằng \({a^2 \over x^2} + {b^2 \over y^2} + {c^2 \over z}= 4 \)
cho ba số abc thỏa mãn \({a\over b+c} + {b\over a+c} + {c\over b+a} = 1\)chứng minh \({a^2\over b+c} + {b^2\over a+c} + {c^2\over b+a} = 0\)
cho a,b,c>=0 va (a+b)(b+c)(a+c)>0. Tim TNN cua
\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(a+c\right)}{a^2+ac+c^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)
mai làm nhé nếu quên thì nhớ nhắc
lam di ban
\({Cho} :{a\over b}={b\over c}={c\over d}={d\over a}. Tính :{ab-3bc+ca\over a^{2}-b^{2}+c^{2}}. \)
Ở đây không có đk a+b+c+d khác không nhé
TH khác không mk giải đc r
Các bạn giúp mk giải TH a+b+c+d=0 vs
Cho a,b,c là các số thực và \(x = ({a \over b-c})^2 + ({b \over c-a})^2 + ({c \over a-b})^2 =<2\)
CM:\( \sqrt{({b-c\over a})^2 + ({c-a\over b})^2 + ({a-b\over c})^2}=|{b-c\over a} + {c-a\over b} + {a-b\over c}|\)
"=<" là bé hơn hoặc bằng
Cho a,b,c và \(({a \over b-c})^2+({b \over c-a})^2+({c \over a-b})^2=<2\)
CM: \(\sqrt{({b-c\over a})^2+({c-a\over b})^2+({a-b\over c})^2}=/{b-c\over a}+{c-a\over b}+{a-b\over c}/\)
"/" ở đây là giá trị tuyệt đối
"=<" là bé hơn hoặc bằng.
Cho a, b, c khác 0 € Q. a+b+c=0. Cmr:
\(\sqrt{{1\over a^2}+{1\over b^2}+{1\over c^2}}\) là số hữu tỉ
Cho a,b,c >0 . C/m:\(ab + bc +ca \geq {{ a^3 \over b} + {b^3 \over c} + {c^3 \over a}}\)
Wow!!
dạ vâng
chứng minh gì thế
thiếu đề à
Cho 0<=a;b;c<=4 va a+b+c=6
Tim MAX cua P=a^2+b^2+c^2+ab+bc+ca