Tìm min A=\(2x+\sqrt{4+2x^2}\)
x nam trong khoảng từ \(\subseteq-\sqrt{2};\sqrt{2}\supseteq\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$
$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$
$\geq \frac{-1}{8}$
Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$
$B=x+\sqrt{x}$
Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$
Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$
\(P=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-4\right)^2}=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
\(P_{min}=3\) khi \(1\le x\le4\)
\(A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}=\sqrt{\left(x+1\right)^2}+\sqrt{\left(1-x^2\right)}\)
\(=\left|x+1\right|+\left|1-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)
Dấu ''='' xảy ra khi \(x\le1\)
Ta có:
\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
Áp dụng bđt Minkowski, ta có:
\(\Rightarrow A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
\(A=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\)
\(A=\sqrt{4^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\ge\sqrt{4^2}=4\)
\(\Rightarrow A\ge4.Đ\text{TXR}\Leftrightarrow\orbr{\begin{cases}x=1;y=-1\\x=3;y=-1\end{cases}}\)
Dấu "=" xảy ra khi (x; y) = (3; -1)
1, ĐKXĐ: x\(\ge0\);x\(\ne1\)
Rút gọn P với \(x\ge0;x\ne1\)ta có
P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)
=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)
=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:
P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)
=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)
=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)
\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3