K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

a) Ta có:

\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)

Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).

b) Ta có:

\(20^{n+1}-20^n=20^n\cdot19\)

Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)

17 tháng 9 2021

a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)

b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)

c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)

11 tháng 8 2023

Tham khảo nhé:

�=5�+4�

a)

Để  chia hết cho 2 thì 5�  2 và 4�  2.
mà 5�  2 thì   2

còn 4�  2 thì luôn đúng.

Vậy để   2 thì   2, hay �={2�,�∈�} và �∈�

b)

Để  chia hết cho 5 thì 5�  5 và 4�  5.
mà 5�  5 thì luôn đúng

còn 4�  2 thì   5.

Vậy để   5 thì   5, hay �={5�,�∈�} và �∈�

c)

Để  chia hết cho 10 thì 5�  10 và 4�  10.
mà 5�  10 thì   2

còn 4�  10 thì   5.

Vậy để   10 thì   2 và   5,

hay �=2�,�=5ℎ;�,ℎ∈�

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2�,�∈�

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5�,�∈�

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 

11 tháng 8 2023

THAM KHẢO nhé:

=5+4

a)

Để  chia hết cho 2 thì 5  2 và 4  2.
mà 
5  2 thì   2

còn 4  2 thì luôn đúng.

Vậy để   2 thì   2, hay ={2,} và 

b)

Để  chia hết cho 5 thì 5  5 và 4  5.
mà 
5  5 thì luôn đúng

còn 4  2 thì   5.

Vậy để   5 thì   5, hay ={5,} và 

c)

Để  chia hết cho 10 thì 5  10 và 4  10.
mà 
5  10 thì   2

còn 4  10 thì   5.

Vậy để   10 thì   2 và   5,

hay =2,=5;,

Giải thích:

Số chia hết cho 2 là số chẵn có dạng 2,

Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng 5,

Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là 

 

7 tháng 8 2023

a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)

b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)

      Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)

c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1

+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2

 ⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên

7 tháng 8 2023

a) \(\overline{aaa}=100a+10a+a=111a\)

mà \(111=37.3⋮37\)

\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)

b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)

\(\Rightarrow dpcm\)

 

13 tháng 8 2017

Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3. 
Chúc bạn học giỏi

nhớ k mk nha cac  bn

13 tháng 8 2017

vì mọi số đó trong thế vào n như 1 thì n +2 mà n= 1 thì bằng  3 thì tích đó chia hết cho 3 mà mọi số + 1 x số đó +2 thì trong đó sẽ  có 1 lần chia hết cho 3 nhân với 1 số ko chia hết cho 3

12 tháng 8 2017

Ta thấy : \(n.\left(n+1\right).\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp 

Vì n , n +1 , n +2 là ba số tự nhiên liên tiếp nên một trong ba số có một số chia hết cho 3 , một số chia 3 dư 1 , một số chia 3 dư 2 

Khi đó \(n.\left(n+1\right).\left(n+2\right)⋮3\)

Vậy .....

12 tháng 8 2017

Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3. 
Chúc bạn học giỏi

nhớ mk nha

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

30 tháng 6 2017

  + Xét TH1: n chẵn

Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.

   + Xét TH2: n lẻ

Suy ra n + 5 chẵn

Do đó (n + 5) chia hết 2

Vậy n(n +5) chia hết cho 2.