\(CMR:\) a) \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6 với mọi số nguyên n
b) \(20^{n+1}-20^n\) chia hết cho 19 với mọi số tự nhiên n
M.n giúp mink nha, cảm ơn nhìu !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
Tham khảo nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
THAM KHẢO nhé:
a)
Để chia hết cho 2 thì và .
mà thì
còn thì luôn đúng.
Vậy để thì , hay và
b)
Để chia hết cho 5 thì và .
mà thì luôn đúng
còn thì .
Vậy để thì , hay và
c)
Để chia hết cho 10 thì và .
mà thì
còn thì .
Vậy để thì và ,
hay
Giải thích:
Số chia hết cho 2 là số chẵn có dạng
Số chia hết cho 5 là số tận cùng là 0 và 5 hay là số có dạng
Số chia hết cho 10 là số chia hết cho cả 2 và 5 nên có dạng là
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
Chứng minh rằng n.(n+1).(n+2) chia hết cho 3
Với mọi số tự nhiên n
Giải chi tiết đầy đủ nha
Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3.
Chúc bạn học giỏi
nhớ k mk nha cac bn
vì mọi số đó trong thế vào n như 1 thì n +2 mà n= 1 thì bằng 3 thì tích đó chia hết cho 3 mà mọi số + 1 x số đó +2 thì trong đó sẽ có 1 lần chia hết cho 3 nhân với 1 số ko chia hết cho 3
Ta thấy : \(n.\left(n+1\right).\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp
Vì n , n +1 , n +2 là ba số tự nhiên liên tiếp nên một trong ba số có một số chia hết cho 3 , một số chia 3 dư 1 , một số chia 3 dư 2
Khi đó \(n.\left(n+1\right).\left(n+2\right)⋮3\)
Vậy .....
Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3.
Chúc bạn học giỏi
nhớ mk nha
Với mọi số tự nhiên n.
Ta có: \(n^2+n+1=n\left(n+1\right)+1\)
Do n; n + 1 là hai số tự nhiên liên tiếp
=> n ( n + 1) chia hết cho 2.
=> n ( n+ 1) + 1 không chia hết chia hết cho 2
=> \(n^2+n+1\)không chia hết cho 2
=> \(n^2+n+1\) không chia hết cho 4.
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
+ Xét TH1: n chẵn
Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.
+ Xét TH2: n lẻ
Suy ra n + 5 chẵn
Do đó (n + 5) chia hết 2
Vậy n(n +5) chia hết cho 2.
a) Ta có:
\(n^2\left(n+1\right)-n\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì trong 3 số nguyên liên tiếp, có ít nhất 1 số chia hết cho 3 và 1 số chia hết cho 2 nên tích n(n-1)(n+1) chia hết cho 6 hay \(n^2\left(n+1\right)-n\left(n+1\right)\) chia hết cho 6(đpcm).
b) Ta có:
\(20^{n+1}-20^n=20^n\cdot19\)
Vì \(20^n\) là số nguyên nên \(20^n\cdot19⋮19\). Hay \(20^{n+1}-20^n⋮19\left(đpcm\right)\)