Giải tam giác ABC vuông tại A biết
a. AB = 18 cm , BC = 21 cm
b.AB = 10 cm , AC = 6cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vuông tại A dễ vẽ thôi bn nên mk ko vẽ nữa :))
Áp dụng định lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow100=36+AC^2\Leftrightarrow AC^2=100-36=84\)
\(\Leftrightarrow AC=8\)
Chu vi Tam giác ABC là
\(6+10+8=24\left(cm\right)\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
a)
Xét tam giác BAC vuông tại A và tam giác BMN vuông tại M có:
\(\widehat{BAC}\)=\(\widehat{BMN}\)
=> Tam giác BAC ᔕ Tam giác BMN (g-g)
=> BA/BM=BC/BN
=> BN=BM.\(\dfrac{BC}{BA}\)=18.\(\dfrac{20}{12}\)=30cm
b)
Xét tam giác PAN vuông tại A và tam giác PMC vuông tại M có
\(\widehat{APN}\)=\(\widehat{MPC}\) (đối đỉnh)
=> Tam giác PAN ᔕ Tam giác PMC (g-g)
=> \(\dfrac{PA}{PM}\)=\(\dfrac{PN}{PC}\)
=> PA.PC=PM.PN (đpcm)
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>AB^2=BC^2-AC^2`
`<=>AB^2=21^2-8^2`
`<=> AB=\sqrt377 (cm)`
a) Áp dụng Pytago ta có:
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 117
=> \(AC=\sqrt{117}\)
\(\sin C=\frac{AB}{BC}=\frac{18}{21}=\frac{6}{7}\)
=> \(\widehat{C}\approx59^0\)
=> \(\widehat{B}\approx31^0\)
b) Áp dụng Pytago ta có:
AB2 + AC2 = BC2
=> BC2 = 136
=> \(BC=\sqrt{136}\)
\(\tan C=\frac{AB}{AC}=\frac{10}{6}=\frac{5}{3}\)
=> \(\widehat{C}\approx59^0\)
=> \(\widehat{B}\approx31^0\)