Cho hình thoi ABCD có góc A=60 độ. Điểm M thuộc AB. CM cắt DA tại N.
a) Chứng minh tam giác MBC ~ tam giác CDN
b) Chứng minh tam giác BMD ~ tam giác DBN
c) Gọi I là giao điểm của BN và DM. Tính góc BID
d) Chứng minh MA.MB=MI.MD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB
a: Xét ΔPBC và ΔPAN có
góc PBC=góc PAN
BP=AP
góc BPC=góc APN
=>ΔPBC=ΔPAN
=>PN=PC
=>P là trung điểm của CN
b: Xét ΔDNC và ΔBCP có
góc NDC=góc PBC
góc DNC=góc PCB
=>ΔDNC đồng dạng vói ΔBCP
Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
b) Xét ΔANM có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a)
D là trung điểm của BC (gt)
mà DF // AB (AB _I_ AC; DF _I_ AC)
=> F là trung điểm của AC
mà D là trung điểm của BC (gt)
=> DF là đường trung bình của tam giác CAB
=> DF = \(\frac{1}{2}\)AB = 10 : 2 = 5 (cm)
b)
D là trung điểm của BC
mà DE // AC (DE _I_ AB; AC _I_ AB)
=> E là trung điểm của AB
mà E là trung điểm của MD (M đối xứng D qua AB)
=> ADBM là hình bình hành
mà AB _I_ MD (M đối xứng D qua AB)
=> ADBM là hình thoi
c)
DEA = EAF = AFD = 900
=> AEFD là hình chữ nhật
=> AEFD là hình vuông
<=> AD là tia phân giác của BAC
mà AD là đường trung tuyến của tam giác ABC vuông tại A (D là trung điểm của BC)
=> Tam giác ABC vuông cân tại A
Bạn tự vẽ hình nha!!!
Ta có:
\(AC \perp AB\) (\(\Delta ABC\) vuông tại A (gt))
\(AC \perp DF\) (gt)
\(\Rightarrow\) AB // DF (Định lí 1 bài từ vuông góc đến song song)
mà D là trung điểm BC (gt)
\(\Rightarrow\) F là trung điểm của AC (Định lí 1 bài đường trung bình của tam giác)
Xét \(\Delta ABC\) có:
D là trung điểm BC (gt)
F là trung điểm của AC (cmt)
\(\Rightarrow\) DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DF=\frac{AB}{2}=\frac{10}{2}=5\left(cm\right)\)
b) Chứng minh tương tự ta có E là trung điểm AB
Xét tứ giác ADBM có:
\(\Rightarrow EM=ED\) (M đối xứng với D qua AB (gt))
\(EA=EB\left(cmt\right)\)
MD giao AB tại E (gt)
\(\Rightarrow\) Tứ giác ADBM là hình bình hành (dhnb)
mà \(AB \perp MD\) (M đối xứng với D qua AB (gt))
\(\Rightarrow\) Tứ giác ADBM là hình thoi (dhnb)
c) Xét tứ giác AEDF có:
\(\widehat{EAF} = 90^0\) (\(\Delta ABC\) vuông tại A (gt))
\(\widehat{AED} = 90^0\) (\(MD \perp AB\))
\(\widehat{AFD} = 90^0\) (\(DF \perp AC\))
\(\Rightarrow\) Tứ giác AEDF là hình chữ nhật (dhnb)
Để hình chứ nhật AEDF
\(\Leftrightarrow\) AEDF là hình thoi
\(\Leftrightarrow\) AD là tia phân giác của \(\Delta ABC\) (vì AD là đường trung tuyến)
\(\Leftrightarrow\) \(\Delta ABC\) cân tại A (vì \(\Delta ABC\) vuông tại A (gt))
\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A