Chứng minh:
b) Nếu \(x+y+z=0\) thì \(\left(x^2+y^2+z^2\right)^2=2\left(x^4+y^4+z^4\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)
\(\Rightarrow x ^2+2xy+y^2=z^2\)
\(\Rightarrow x^2+y^2-z^2=-2xy\) (chuyển vế đổi dấu)
\(\Rightarrow\left(x^2+y^2-z^2\right)^2=\left(-2xy\right)^2\)
\(\Rightarrow x^4+y^4+z^4+2x^2y^2-2y^2z^2-2x^2z^2=4x^2y^2\)
\(\Rightarrow x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\)
\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\)
Mong bạn hiểu lời giải của mình.Chúc bạn học tốt.
\(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\)
\(=\dfrac{z-x+x-y}{\left(x-y\right)\left(z-x\right)}+\dfrac{x-y+y-z}{\left(y-z\right)\left(x-y\right)}+\dfrac{y-z+z-x}{\left(z-x\right)\left(y-z\right)}\)
\(=\dfrac{1}{x-y}+\dfrac{1}{z-x}+\dfrac{1}{y-z}+\dfrac{1}{x-y}+\dfrac{1}{z-x}+\dfrac{1}{y-z}\)
\(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\)
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
Ta có:
\(x+y+x=0\)
<=>\(x+y=-z\)
\(\Leftrightarrow\left(x+y\right)^2=\left(-z\right)^2\\ \Leftrightarrow x^2+2xy+y^2=z^2\\ \Leftrightarrow x^2+y^2-z^2=-2xy\)
\(\Leftrightarrow\left(x^2+y^2-z^2\right)^2=\left(-2xy\right)^2\\ \Leftrightarrow x^4+y^4+z^4+2x^2y^2-2y^2z^2-2z^2x^2=4x^2y^2\\ \Leftrightarrow x^4+y^4+z^4=4x^2y^2-2x^2y^2+2y^2z^2+2z^2y^2\\ \Leftrightarrow x^4+y^4+z^4=2x^2y^2+2y^2z^2+2z^2x^2\\ \Leftrightarrow2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2\\ \Leftrightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\)
Ta có:
\(x+y+z=0\)
\(\Leftrightarrow x+y=-z\)
Bình phương 2 vế:
\(\Leftrightarrow x^2+2xy+y^2=z^2\)
\(\Leftrightarrow x^2+y^2-z^2=-2xy\)
Bình phương 2 vế thêm lần nữa:
\(\Leftrightarrow x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2=4x^2y^2\)
\(\Leftrightarrow x^4+y^4+z^4=2x^2y^2+2y^2z^2+2x^2z^2\)
Cộng 2 vế cho \(x^4+y^4+z^4\) , ta có:
\(\Rightarrow2\left(x^4+y^4+z^4\right)=x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(\Leftrightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)