tìm x biết(x)+ (x +1)+(x+2)+....+(x+99)=50x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)+(2x+3)+(3x+5)+...+(50x+99)=3775
=> (x + 2x + 3x + ... + 50x) + (1 + 3 + 5 + ... + 99) = 3775
=> x . (1 + 2 +3 + ...+ 50) + (1 + 3 + 5 + ... + 99) = 3775
Áp dụng công thức tính dãy số ta có :
\(1+2+3+...+50=\frac{\left[\left(50-1\right):1+1\right].\left(50+1\right)}{2}=\frac{50.51}{2}=25.51=1275\)
\(1+3+5+...+99=\frac{\left[\left(99-1\right):2+1\right].\left(99+1\right)}{2}=\frac{50.100}{2}=50.50=2500\)
=> x . 1275 + 2500 = 3775
=> 1275x = 1275
=> x = 1
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
\(129-50x^2=-159\)
\(\Leftrightarrow50x^2=288\)
\(\Leftrightarrow x^2=\frac{144}{25}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{12}{5}\\x=-\frac{12}{5}\end{array}\right.\)
\(129-50x^2=-159\)
\(\Rightarrow50x^2=288\)
\(\Rightarrow x^2=\frac{144}{25}\)
\(\Rightarrow x=\frac{12}{5}\) hoặc \(x=\frac{-12}{5}\)
Vậy \(x=\frac{12}{5}\) hoặc \(x=\frac{-12}{5}\)
( 100x - 50x - 50x ) + x + 100 = 100
=> x + 100 = 100
=> x = 0
Ta có: 100x + x - 50x + 100 - 50x = 100
=> (100x + x - 50 - 50x) + 100 = 100
=> x + 100 = 100
=> x = 100 - 100
=> x = 0
f(x)= x^6 - 50x^5+50x^4-50x^3+50x^2-50x+50 tại x=49
<=> \(f_{\left(49\right)}\)= 49^6 - 50.49^5+50.49^4-50.49^3+50.49^2-50.49+50
<=> \(f_{\left(49\right)}\)= 13519544083, 0396489851
Ta có \(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=50x\)
\(\Rightarrow100x+\left(1+2+3+....+99\right)=50x\)
\(\Rightarrow100x+4950=50x\)
\(\Rightarrow-50x=4950\)
\(\Rightarrow x=-99\)
x + x + 1 + ... + x + 99 = 50x
Có số số hạng là : ( 99 - 1 ) : 1 + 1 = 99 ( số )
Tổng là : ( 99 + 1 ) . 99 : 2 = 4950
=> 100x + 4950 = 50x
4950 = -50x
=> x = -99
Vậy,........