Tìm x biết : 2018 - |x - 2018| = x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(5^2018+5^2018+5^2018+5^2018) + 5^2018 -5x=0
5^2018+5^2018+5^2018+5^2018+5^2018-5x =0
5(5^2018)-5x =0
5x =5(5^2018)-0
5x =5(5^2018)
Suy ra x= 5^2018
Vậy: x= 5^2018
Theo bài ra ta có:x> hoặc = 2018
=>2018+2018-x=x
=>2x=2018*2
=>x=2018
Lập bảng
2018 | 2019 | ||||
|x-2018| | 2018-x | 0 | 2018-x | | | x-2018 |
|x-2019| | 2019-x | | | x-2019 | 0 | x-2019 |
|x-2018|+|x-2019|=1 | 4037-2x | 4037 | 2x-4037 | ||
4037-2x=1 với \(x\le2018\)
2x=4036
x=2018(t/m)
4037=1(loại)
2x-4037=1 với x\(\ge2019\)
2x=4038
x=2019(t/m)
Vì \(\left(x-5\right)^{2018}\ge0;\left|2y^2-162\right|^{2018}\ge0\Rightarrow\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}\ge0\)
mà \(\left(x-5\right)^{2018}+\left|2y^2-162\right|^{2018}=0\)
Dấu ''='' xảy ra khi x = 5 ; \(2y^2=162\Leftrightarrow y^2=81\Leftrightarrow\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\)
Vì \(\left(x-5\right)^{2018}\ge0\\ \left|2y^2-162\right|^{2018}\ge0\\ \)
Suy ra phương trình dc thỏa mãn khi và chỉ khi x-5 = 0 và 2y^2-162=0
\(\left\{{}\begin{matrix}\left(x-5\right)^{2018}=0\\\left|2y^2-162\right|^{2018}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-5=0\\2\left(y^2-81\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\pm9\end{matrix}\right.\)
\(\left|x^{2018}+|x-1|\right|=x^{2018}+2404\)
\(\Leftrightarrow x^{2018}+\left|x-1\right|=x^{2018}+2404\)
\(\Leftrightarrow\left|x-1\right|=2404\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2404\\x-1=-2404\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2405\\x=-2403\end{cases}}}\)