A = \(\frac{1}{3}\)+ \(\frac{1}{9}\)+ \(\frac{1}{27}\) + \(\frac{1}{81}\)+ ................ + \(\frac{1}{6561}\)
Cac ban giai ho minh nhe, minh can gap trong toi nay.
giai cac buoc ra nhe !!!
Thank you very much .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+ 1 /3+1/9+1/27+1/81+1/243+1/729.
Đặt:
S = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
Nhân S với 3 ta có:
S x 3 = 3 +1+ 1/3 + 1/9 + 1/27 + 1/81
Vậy:
S x 3 - S = 3 - 1/243
2S = 728/243
S = 364/243
nhân cả 2 vế với 3 ta có:
sx3=3+1+1/3 +1/9 +1/27 +1/81 +1/243
sx3-s=3 -1/729=2186/729
sx2=2186/729
s=2186/729 :2
s=1093/729
Bước1: Chứng minh: x>ln(1+x)>x-x^2/2 (khảo sát hàm lớp 12)
Bước2: Đặt A=1+1/2+1/3+...+1/N.
B=1+1/2^2+1/3^2+...+1/N^2.
C=1+1/1.2+1/2.3+...+1/(N-1).N
D=ln(1+1)+ln(1+1/2)+ln(1+1/3)+...
...+ln(1+1/N).
Bước 3: Nhận xét: 1/k(k+1)=1/k-1/(k+1)
suy ra C=2-1/N <2
Bước 4: Nhận xét ln(k+1)-lnk=ln(1+1/k)
suy ra D=ln(N+1)
Bước 5: Nhận xét B<C<2
Bước 6: Chứng minh A->+oo (Omerta_V đã CM)
Bước 7: Từ Bước1 suy ra:
A>D>A-1/2B>A-1.
Bước 8: Vậy A xấp sỉ D với sai số tuyệt đối bằng 1.
Mà A->+oo. Nên khi N rất lớn thì sai số tương đối có thể coi là 0.
Cụ thể hơn Khi N>2^k thì sai số tương đối < k/2
Vậy khi N lớn hơn 1000000 thì ta có thể coi A=ln(N+1).
vậy đáp án là 5
\(\Leftrightarrow1-\frac{4}{a+7}=1-\frac{5}{a+8}=1-\frac{6}{a+9}=1-\frac{7}{a+10}=1-\frac{8}{a+11}=1-\frac{9}{a+12}\)
\(\Leftrightarrow\frac{a+3}{a+7}=\frac{a+3}{a+8}=\frac{a+3}{a+9}=\frac{a+3}{a+10}=\frac{a+3}{a+11}=\frac{a+3}{a+12}\)
=> Vì a nguyên dương => a +3 khác 0
=> a+7 =a+8 =a +9 =a+10=a+11=a+12 => 7=8=9=10=11=12 ( vô lí )
=> Không có số a nào thỏa mãn
bn ơi mk nghĩ đề bn ghi sai rồi đó mk sửa lại nha
Tìm số .... tối giản:
\(\frac{4}{a+7};\frac{5}{a+8};\frac{6}{a+9};\frac{7}{a+10};\frac{8}{a+11};\frac{9}{a+12}\)
Giải: Các phân số trên có dạng \(\frac{x}{a+x+3}\)
Để \(\frac{x}{a+x+3}\) tối giản \(\Leftrightarrow\)\(\left(x;a+x+3\right)=1\)\(\Leftrightarrow\)\(\left(x;a+3\right)=1\)
Do đó a + 3 nguyên tố cùng nhau với mỗi số x = 4; 5; 6; 7; 8; 9
Mà a nhỏ nhất suy ra a + 3 = 11 (11 là số nguyên tố nhỏ nhất mà nguyên tố cùng nhau với mỗi số x = 4; 5; 6; 7; 8; 9)
Từ đó a = 8.
siêu tốc
\(2000+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)=2000+\frac{50}{3.101}\)
Ta có: \(2000+\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)\)
=\(2000+\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{99x101}\right)\)
Đặt A=\(\left(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{99x101}\right)\)
=> 2xA =\(\left(\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{99x101}\right)\)
2xA = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
2xA = \(\frac{1}{3}-\frac{1}{101}\)
2xA = \(\frac{98}{303}\)
A = \(\frac{98}{606}=\frac{49}{303}\)
=> \(2000+\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\right)=2000+\frac{49}{303}=\frac{606049}{303}\)
Bạn xem rút gọn được thì rút nhé
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}\)
\(x=-\frac{1}{5}:5=-\frac{1}{25}\)
c) \(\frac{5}{3}-x=7+\frac{4}{5}\)
\(\frac{5}{3}-x=\frac{39}{5}\)
\(x=\frac{5}{3}-\frac{39}{5}=-\frac{92}{15}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}+\frac{5}{11}\)
\(2x=\frac{17}{22}\)
\(x=\frac{17}{22}:2\)
\(x=\frac{17}{44}\)
\(x=-\frac{1}{5}:5\)
NÈ BẠN!!!
a) \(x-\frac{4}{5}=\frac{5}{7}\)
\(x=\frac{5}{7}+\frac{4}{5}=\frac{25}{35}+\frac{28}{35}=\frac{53}{35}\)
b) \(5x=-\frac{1}{5}+\frac{11}{5}\)
\(5x=2\)
\(x=\frac{2}{5}\)
c)\(\frac{5}{3}-x=7\)
\(x=\frac{5}{3}-7=\frac{5}{3}-\frac{21}{3}=-\frac{16}{3}\)
d) \(-\frac{5}{11}+2x=\frac{7}{22}\)
\(2x=\frac{7}{22}-\frac{-5}{11}=\frac{7}{22}-\frac{-10}{22}=\frac{17}{22}\)
\(x=\frac{17}{22}:2=\frac{17}{22}\cdot\frac{1}{2}=\frac{17}{44}\)
K CHO MÌNH NHA!!!
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=3.\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\) \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)
\(\Rightarrow2A=1-\frac{1}{3^8}\) \(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
k cho mik đi mn!Nguyễn Như Quỳnh!
Cho \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
\(\frac{1}{3}A=\frac{1}{3}\times\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\right)\)
\(\frac{1}{3}A=\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{19683}\)
\(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right)-\left(\frac{1}{9}+\frac{1}{27}+...+\frac{1}{19683}\right)\)
\(\frac{2}{3}A=\frac{1}{3}-\frac{1}{19683}\)
\(A=\frac{4840}{9683}:\frac{2}{3}=\frac{7260}{9683}\)
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+....+\frac{1}{6561}\)
\(\Rightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{2187}\)
\(\Rightarrow\)\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{2187}\right)-\left(\frac{1}{3}+\frac{1}{9}+....+\frac{1}{6561}\right)\)
\(\Rightarrow\)\(2A=1-\frac{1}{6561}=\frac{6560}{6561}\)
\(\Rightarrow\)\(A=\frac{3280}{6561}\)