cho n\(\in\)N CMR: [2014+n].[2015+n] chia het 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Nếu n lẻ thì (n+1) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n chẵn thì (n+8) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n = 0 => 1 x 8 = 8 chia hết cho 2
b)
n^2 + n = n x ( n + 1 )
mà n và n+1 là 2 số liên tiếp => có một số chẵn => chia hết cho 2
a) \(A=\left(n+1\right)\left(n+8\right)\)
Nếu: \(n=2k\)thì: \(A\)\(⋮\)\(2\)
Nếu: \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(A\)\(⋮\)\(2\)
Vậy A chia hết cho 2
b) \(B=n^2+n=n\left(n+1\right)\)
Nếu: \(n=2k\)thì: \(B\)\(⋮\)\(2\)
Nếu \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(B\)\(⋮\)\(2\)
Vậy B chia hết cho 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\left(n+2014^{2015}\right)\left(n+2015^{2014}\right)\)
- \(n=2k\)thì: \(n+2014^{2015}=2k+2014^{2015}\)\(⋮\)\(2\) \(\Rightarrow\)\(A⋮2\)
- \(n=2k+1\)
Ta có: \(n=2k+1\equiv1\left(mod2\right)\)
\(2015^{2014}\equiv1\left(mod2\right)\)
\(\Rightarrow\)\(n+2015^{2014}\)\(⋮2\)\(\Rightarrow\)\(A⋮2\)
Vậy
n chẵn 2014+n chẵn