K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(M=4x-x^2+3\)

\(=-x^2+4x+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7\)

Vì; \(-\left(x-2\right)^2+7\le7\forall x\)

=> Max M =7 tại \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Ta có: \(N=x-x^2=-x^2+x\)

\(=-x^2+x-\frac{1}{4}+\frac{1}{4}\)

\(=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì: \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

=> Max N =1/4 tại \(-\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

=.= hok tốt!!

30 tháng 7 2018

a)\(M=4x-x^2+3\)

\(M=-x^2+4x+3\)

\(M=-x^2+4x-4+7\)

\(M=-\left(x-2\right)^2+7\le7.Với\forall x\in Q\)

Dấu "=" xảy ra khi x = 2

Vậy Max M = 7 <=> x = 2

b)\(N=x-x^2=-x^2+x\le x\)

Dấu "=" xảy ra khi x = 0

=> Max N = 0 <=> x = 0

\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)

Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

    Vậy A max là 7 chỉ khi x=-2

15 tháng 8 2020

b) \(7-x^2-y^2-2\left(x+y\right)\)

\(=7-x^2-y^2-2x-2y\)

\(=-x^2-2x-1-y^2-2y-1+9\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)

Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)

Vậy ...................

16 tháng 8 2016

khó hiểu quá 

16 tháng 8 2016

bn giải giúp mình đi

27 tháng 2 2022

\(A=\dfrac{6x^2+21x+22}{x^2+4x+4}\)

\(=\dfrac{6\left(x^2+4x+4\right)-3x-2}{x^2+4x+4}\)

\(=6+\dfrac{-3x-2}{\left(x+2\right)^2}\)

\(=6+\dfrac{-3\left(x+2\right)+4}{\left(x+2\right)^2}\)

\(=6-\dfrac{3}{x+2}+\dfrac{4}{\left(x+2\right)^2}\)

-Đặt \(a=\dfrac{1}{x+2}\) thì:

\(A=6-3a+4a^2=\left(2a\right)^2-2.2a.\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{87}{16}=\left(2a-\dfrac{3}{4}\right)^2+\dfrac{87}{16}\ge\dfrac{87}{16}\)

\(A_{min}=\dfrac{87}{16}\)\(\Leftrightarrow\left(2a-\dfrac{3}{4}\right)^2=0\Leftrightarrow2a-\dfrac{3}{4}=0\Leftrightarrow2a=\dfrac{3}{4}\)

\(\Leftrightarrow2.\dfrac{1}{x+2}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{x+2}=\dfrac{3}{8}\Leftrightarrow x+2=\dfrac{8}{3}\Leftrightarrow x=\dfrac{2}{3}\)

27 tháng 2 2022

-Kết hợp phương pháp nhóm hạng tử với đặt ẩn phụ luôn. 

5 tháng 8 2016

\(A=\frac{1}{\left|x-2\right|+3}\)

Để x đạt giá trị lớn nhất thì \(\left|x-2\right|+3\) đạt giá trị nhỏ nhất

Có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+3\ge3\)

Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy \(Max_A=\frac{1}{3}\)tại \(x=2\)

\(A=\frac{1}{\left|x+2\right|}+3\)Trường hợp : \(x+2\ne0\Rightarrow x=-2\)

Ta có : \(\left|x+2\right|>0\Rightarrow\frac{1}{\left|x+2\right|}>0\)

\(\Rightarrow A=\frac{1}{\left|x+2\right|}+3\ge3\)

MAx \(A=3\Leftrightarrow\frac{1}{\left|x+2\right|}=0\left(vôlys\right)\)

Vậy A ko tồn tại giá trị lớn nhất