K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Mk mới giải đc một đoạn. 

9 tháng 2 2020

 \(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\left(1\right)\\\sqrt{x-y}+\sqrt{x+y}=2\left(2\right)\end{cases}}\)

ĐKXĐ: \(x\ge y\ge0\)

ta có: (1)\(\Leftrightarrow\left(x^3-y^3\right)-3y^3-9x^2y+3x^2y+9xy^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3y\left(x^2-y^2\right)-9xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3y\left(x+y\right)-9xy\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-5xy+4y^2\right)=0\)

\(\orbr{\begin{cases}x=y\\x^2-5xy+4y^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x-y\right)\left(x-4y\right)=0\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=4y\end{cases}}\)

* Thay x=y vào phương trình (2), ta được: \(\sqrt{y-y}+\sqrt{2y}=2\Leftrightarrow y=2\Rightarrow x=y=2\)

* thay x=4y vào phương trình (2), ta được: \(\sqrt{4y-y}+\sqrt{4y+y}=2\)

\(\Leftrightarrow y=8-2\sqrt{15}\)\(\Rightarrow x=32-8\sqrt{15}\)

Vậy.......

2 tháng 2 2021

Xem lại đề bạn nhé

3 tháng 8 2016

\(\text{ĐK: }\hept{\begin{cases}0\le x\le1\\\sqrt{x}\ne\sqrt{1-x}\end{cases}\Leftrightarrow}\hept{\begin{cases}0\le x\le1\\2x-1\ne0\end{cases}}\)

\(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{x-\left(1-x\right)}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3\left(\sqrt{x}+\sqrt{1-x}\right)\)\(\text{Đặt }t=\sqrt{x}+\sqrt{1-x}\)

\(t^2=x+1-x+2\sqrt{x}\sqrt{1-x}=1+2\sqrt{x-x^2}\)

\(\Rightarrow2\sqrt{x-x^2}=t^2-1\)

\(pt\rightarrow3t=3+t^2-1\Leftrightarrow t^2-3t+2=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=2\end{cases}}\)

\(pt\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{cases}}\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2021

Lời giải:

a. Đề thiếu

b. PT $\Leftrightarrow \sqrt{(x-1)^2}+\sqrt{(x-2)^2}=3$

$\Leftrightarrow |x-1|+|x-2|=3$
Nếu $x\geq 2$ thì pt trở thành:
$x-1+x-2=3$

$\Leftrightarrow 2x-3=3$

$\Leftrightarrow x=3$ (tm)

Nếu $1\leq x< 2$ thì:

$x-1+2-x=3\Leftrightarrow 1=3$ (vô lý)

Nếu $x< 1$ thì:

$1-x+2-x=3$

$\Leftrightarrow x=0$ (tm)

5 tháng 7 2021

Đk:\(3\le x\le7\)

Có \(\left(\sqrt{x-3}+\sqrt{7-x}\right)^2=4+2\sqrt{\left(x-3\right)\left(7-x\right)}\ge4;\forall3\le x\le7\)

\(\Leftrightarrow\sqrt{x-3}+\sqrt{7-x}\ge2\) (I)

Có \(6x-7-x^2=2-\left(x^2-6x+9\right)=2-\left(x-3\right)^2\le2\) (II)

Từ (I) và (II) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{\left(x-3\right)\left(7-x\right)}=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow x=3\) (tm)

Vậy...

NV
5 tháng 7 2021

ĐKXĐ: \(3\le x\le7\)

Ta có:

\(VT=\sqrt{x-3}+\sqrt{7-x}\ge\sqrt{x-3+7-x}=2\)

\(VP=2-\left(x-3\right)^2\le2\)

\(\Rightarrow VT\ge VP\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)=0\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy pt có nghiệm duy nhất \(x=3\)

b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)

\(\Leftrightarrow x^2-6x+9=3\)

\(\Leftrightarrow x^2-6x+6=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)

15 tháng 8 2017

x=3+ √3

15 tháng 8 2017

\(\sqrt{x^2-6x+9}\) \(-\frac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)

\(\Leftrightarrow\left|x-3\right|-\sqrt{3}=0\)

\(\Leftrightarrow\left|x-3\right|=\sqrt{3}\)

th1 \(x\ge3\Rightarrow x-3=\sqrt{3}\Rightarrow x=3+\sqrt{3}\)

th2 \(x< 3\Rightarrow3-x=\sqrt{3}\Rightarrow x=3-\sqrt{3}\)