K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2020

Áp dụng bất đẳng thức Cauchy cho hai số không âm ta có

\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(y^2+\dfrac{1}{y^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

=> \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge4\)

Dấu"=" xảy ra \(\Leftrightarrow x^2=\dfrac{1}{x^2};y^2=\dfrac{1}{y^2}\)

\(\Leftrightarrow x^4=1;y^4=1\Leftrightarrow x=\pm1;y=\pm1\)

19 tháng 12 2020

Thảo ơi== Sao tao không vào hộp tin nhắn của mày với tao được==??

20 tháng 12 2020

ĐK: x,y khác 0

Áp dụng BĐT Cô-si ta có:

\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\\ \ge2\sqrt{x^2.\dfrac{1}{x^2}}+2\sqrt{y^2.\dfrac{1}{y^2}}\\ =2+2=4\)

Dấu bằng xảy ra khi và chỉ khi: \(x=y=\pm1\)

20 tháng 12 2020

Ta có:

\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\\ \Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=0\\ \Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)

Do \(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\) và \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2\ge0\\\left(y-\dfrac{1}{y}\right)^2\ge0\end{matrix}\right.\) nên:

\(\left(x-\dfrac{1}{x}\right)^2=\left(y-\dfrac{1}{y}\right)^2=0\)

Do đó: \(x=y=\pm1\)

3 tháng 4 2017

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Leftrightarrow x^2-2\cdot x\cdot\frac{1}{x}+\frac{1}{x^2}+y^2-2\cdot y\cdot\frac{1}{y}+\frac{1}{y^2}=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=-1\\y=1\end{cases}}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x-\frac{1}{x}=0\\y-\frac{1}{y}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}x=-1\\x=1\end{cases}}\\\orbr{\begin{cases}y=1\\y=-1\end{cases}}\end{cases}}\)\(x-\frac{1}{x}=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

\(y-\frac{1}{y}=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

9 tháng 3 2017

\(\left|x-\frac{1}{2}\right|\left|y+\frac{1}{3}\right|\left|z-2\right|=0\)

Vì \(\left|x-\frac{1}{2}\right|;\left|y+\frac{1}{3}\right|;\left|z-2\right|\)luôn lớn hon hoặc bằng 0

=> x-1/2=0 ; y+1/3=0 ; z-2=0

=> x=1/2 ; y=-1/3 ; z=2

10 tháng 3 2017

đọc sai đề rồi

21 tháng 6 2015

=> \(\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

=> \(\left(x^2-2x.\frac{1}{x}+\frac{1}{x^2}\right)+\left(y^2-2.y.\frac{1}{y}+\frac{1}{y^2}\right)=0\)

=> \(\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

<=> \(x-\frac{1}{x}=0;y-\frac{1}{y}=0\)

=> \(x^2=1;y^2=1\)

=> x = 1 hoặc -1

y = 1 hoặc -1

30 tháng 3 2018

2x.(2x+1)(2x+2)...(2x+4)−2x.5y=11879.2x2x.(2x+1)(2x+2)...(2x+4)−2x.5y=11879.2x

⇒y=0;x=3⇒y=0;x=3

Vì VP không chia hết cho 5 ;y>0 thì VT chia hết cho 5

a) 2x+1.3y=123

<=>2x+1.3y=(22)3.33

<=> 2x+1=2 và 3y=33

<=>x+1=6 và y=3

<=>x=5 và y=3

b) 10x : 5y=20y

<=>10x=20y.5y=100y=(102)y

<=>x=2y (Nhiều số lắm chèn)

c) 2x=4y-1 

<=>2x=2y-2

<=>x=y-2

Mặt khác: 27y=3x+8

<=> 33y=3x+8

<=>3y=x+8

<=>3y=(y-2)+8

<=>2y=6

<=>y=3

=>x=y-2=3-2=1

2 tháng 7 2021

câu a) là 12mà bạn