Cho a,b nguyên dương và a+1;b+2007 chia hết cho 6.Chứng minh rằng:4a+a+b chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Đặt A= \(a^{2017}+a^{2015}+1\)
\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)
= \(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)
\(\Rightarrow A\) chia hết cho \(a^2+a+1\)
do \(a^2+a+1\) > 1 (dễ cm đc)
mà A là số nguyên tố
\(\Rightarrow A=a^2+a+1\)
hay \(a^{2017}+a^{2015}+1=a^2+a+1\)
\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)
\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)
do a dương => a>0 => a-1=0=> a=1(t/m)
Kết Luận:...
chỗ nào bạn chưa hiểu cứ nói cho mình nha :3
d là ước dương của a và b suy ra: \(\hept{\begin{cases}a=d.a^'\\b=d.b^'\end{cases}}\)
có \(\frac{a+1}{b}+\frac{b+1}{a}\)nguyên dương suy ra \(\frac{a^2+b^2+a+b}{ab}\)nguyên dương\(\Rightarrow a^2+b^2+a+b\)chia hết cho a.b
có \(a.b=d.a^'.d.b^'=a^'.b^'d^2\Rightarrow a^2+b^2+a+b\)chia hết cho \(d^2\)
ta có: \(a^2+b^2+a+b=d^2.\left(a^'\right)^2+d^2\left(b^'\right)^2+d.a^'+d.b^'\)
\(=d\left(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'\right)\)chia hết cho \(d^2\)
suy ra \(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'=d\left(a^'+b^'\right)+a^'+b^'\)chia hết cho d \(\Rightarrow a^'+b^'\)chia hết cho d.\(\Rightarrow a^'+b^'\ge d\Leftrightarrow d.a^'+d.b^'\ge d^2\Leftrightarrow a+b\ge d^2\Leftrightarrow d\le\sqrt{a+b}\)
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\left(a;b\ne0\right)\)
=> \(\frac{a+b}{ab}=\frac{1}{2}\)
=> \(\frac{a+b}{ab}.2ab=\frac{1}{2}.2ab\)
=> 2(a + b) = ab
=> 2a + 2b = ab
=> ab - 2a - 2b = 0
=> ab - 2a - 2b + 4 = 4
=> a(b - 2) - 2(b - 2) = 4
=> (a - 2)(b - 2) = 4
Nhận thấy \(a;b\inℤ\Rightarrow a-2;b-2\inℤ\)
Khi đó ta có 4 = 1.4 = 2.2 = (-2).(-2) = (-4).(-1)
Lập bảng xét các trường hợp
a - 2 | 1 | 4 | 2 | -2 | -1 | -4 |
b - 2 | 4 | 1 | 2 | -2 | -4 | -1 |
a | 3 | 6 | 4 | 0 | 1 | -2 |
b | 6 | 3 | 4 | 0 | -2 | 1 |
Vậy các cặp (a;b) nguyên dương thỏa mãn là (3;6) ; (6;3) ; (4;4)
thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc
Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p
\(\Rightarrow a^2-b^2⋮p\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).
+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)
+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)
Do đó \(\left(a^2+1,b^2+1\right)=1\).
Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)
Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).
Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.
Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.
Vậy ....
* Chứng minh \(4^a+a+b\equiv0\left(mod2\right)\)
Ta có:
\(a+1+b+2007=a+b+2008\equiv a+b\equiv0\left(mod2\right)\)
\(\Rightarrow4^a+a+b\equiv0\left(mod2\right)\)
* Chứng minh \(4^a+a+b\equiv0\left(mod3\right)\)
Ta có:
\(a+1+b+2007=a+b+2008\equiv1+a+b\equiv0\left(mod3\right)\)
\(\Rightarrow a+b\equiv2\left(mod3\right)\)
\(\Rightarrow4^a+a+b\equiv1+a+b\equiv1+2\equiv0\left(mod3\right)\)
Vì 2, 3 nguyên tố cùng nhau nên \(4^a+a+b\equiv0\left(mod6\right)\)
bài này không đúng với \(a=5\) bn à