K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

ta có: 5 chia hết cho 5

=> A = 2 x 3 x 5 x 7 x 9 x 2013 chia hết cho 5

=> A = 2 x 3 x 5 x 7 x 9 x 2013 + 1 chia 5 dư 1

29 tháng 7 2018

a= 2x 3x 5x 7x 9x 2013.

Vì trong tích a có thừa số 5.

=> a= 2x 3x 5x 7x 9x 2013\(⋮\) 5.

=> Khi cộng thêm 1 thì a: 5 dư 1.

29 tháng 7 2018

do 5 chia hết cho5 nên 2 x 3 x 4 x 5 x 7 x 9 x 2013 chia hết cho 5

hay A chia hết cho 5

suy ra A + 1 CHIA 5 DƯ 1

20 tháng 9 2017

Từ giả thiết ta có thể viết \(f\left(x\right)=g\left(x\right)\left(x+1\right)+5\)    (1) 

Và \(f\left(x\right)=h\left(x\right)\left(x-2\right)+7\)   (2) 

Do (x + 1)(x - 2) là đa thức bậc 2 nên số dư là đa thức bậc 1. Tức là:

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+ax+b\)    (Với g(x) , h(x), t(x) là các đa thức)

Ta có \(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x+1\right)+b-a=\left(x+1\right)\left[\left(x-2\right)t\left(x\right)+a\right]+b-a\)

Theo (1) thì b - a = 5.

Ta cũng có :

\(f\left(x\right)=\left(x+1\right)\left(x-2\right)t\left(x\right)+a\left(x-2\right)+b+2a=\left(x-2\right)\left[\left(x+1\right)t\left(x\right)+a\right]+b+2a\)

Theo (2) thì b + 2a = 7.

Từ đó ta tìm được \(a=\frac{2}{3};b=\frac{17}{3}\)

22 tháng 11 2015

Ta có: 

+) a chia hết cho b được thương là q thì a = b.q

+) Nếu a chia cho b được thương là  dư r thì  a = b.q + r 

=> a - r = b.q => a - r chia hết cho b

Hoặc a + (b - r) = bq + r +  (b - r) => a + (b - r) = bq + b = b(q+1) => a + (b - r) chia hết cho b

Ví dụ: a chia cho 5 dư 2 => a - 2 chia hết cho 5 hoặc a + 3 chia hết cho 5

 

22 tháng 11 2015

gọi số cần tìm là a 

ta có :

a chia 5 dư 2 chia 7 dư 4 chia 9 dư 6

=>a+3 chia hết cho 5;7;9

 a chia 5 dư 2=>a-2 chia hết cho 5=>a-2+5 chia hết cho 5=>a+3 chia hết cho 5

a chia 7 dư 4 =>a-4 chia hết cho 7 =>a-4+7 chia hết cho 7=>a+3 chia hết cho 7

a chia 9 dư 6 =>a-6 chia hết cho 9=>a-6+9 chia hết cho 9=>a+3 chia hết cho 9 

nên lấy a+3  để xét BC của 5;7;9

....