a)2^x+3=2^7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=\dfrac{3+2\sqrt{2}}{1}+\dfrac{\sqrt{5}-2}{1}\)
\(=3+2\sqrt{2}+\sqrt{5}-2=2\sqrt{2}+\sqrt{5}+1\)
2: \(\dfrac{1}{\sqrt{3}+\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}}{4}+\dfrac{2\left(1+\sqrt{7}\right)}{-6}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}}{4}-\dfrac{1+\sqrt{7}}{3}\)
\(=\dfrac{3\left(\sqrt{7}-\sqrt{3}\right)-4\left(\sqrt{7}+1\right)}{12}=\dfrac{-\sqrt{7}-3\sqrt{3}-4}{12}\)
3:
\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{2-\sqrt{a}}=-\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=-\sqrt{a}\)
4:
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{xy}\)
1) \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=\dfrac{3+2\sqrt{2}}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}+\dfrac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(=\dfrac{3+2\sqrt{2}}{3^2-\left(2\sqrt{2}\right)^2}+\dfrac{\sqrt{5}-2}{\left(\sqrt{5}\right)^2-2^2}\)
\(=\dfrac{3+2\sqrt{2}}{1}+\dfrac{\sqrt{5}-2}{1}\)
\(=3+2\sqrt{2}+\sqrt{5}-2\)
\(=2\sqrt{2}+\sqrt{5}+1\)
2) \(\dfrac{1}{\sqrt{3}-\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
\(=\dfrac{\sqrt{3}+\sqrt{7}}{\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{3}-\sqrt{7}\right)}+\dfrac{2\cdot\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{7}}{\left(\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}+\dfrac{2\cdot\left(1+\sqrt{7}\right)}{1^2-\left(\sqrt{7}\right)^2}\)
\(=\dfrac{-\sqrt{3}-\sqrt{7}}{4}-\dfrac{2\cdot\left(1+\sqrt{7}\right)}{6}\)
\(=\dfrac{-\sqrt{3}-\sqrt{7}}{4}-\dfrac{1+\sqrt{7}}{3}\)
\(=\dfrac{-3\sqrt{3}-3\sqrt{7}}{12}-\dfrac{4+4\sqrt{7}}{12}\)
\(=\dfrac{-3\sqrt{3}-3\sqrt{7}-4-4\sqrt{7}}{12}\)
\(=\dfrac{-3\sqrt{3}-7\sqrt{7}-4}{12}\)
3) \(\dfrac{a-2\sqrt{a}}{2-\sqrt{a}}\)
\(=-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\)
\(=-\dfrac{\sqrt{a}\cdot\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)
\(=-\sqrt{a}\)
4) \(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{xy}+\sqrt{y}\cdot\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{xy}\)
a
=> \(x=\dfrac{2}{7}:\dfrac{2}{3}=\dfrac{2.3}{2.7}=\dfrac{3}{7}\)
b
=> \(x=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2.5}{3.5}=\dfrac{2}{3}\)
c
=> \(x=\dfrac{13}{7}.\dfrac{8}{13}=\dfrac{13.8}{7.13}=\dfrac{8}{7}\)
d
=> \(x=\dfrac{3}{2}:\dfrac{7}{4}=\dfrac{3.2.2}{2.7}=\dfrac{6}{7}\)
a: 2/3*x=2/7
=>x=2/7:2/3=3/7
b: x*3/5=2/5
=>x=2/5:3/5=2/5*5/3=10/15=2/3
c: x:8/13=13/7
=>x=13/7*8/13=8/7
d: 3/2:x=7/4
=>x=3/2:7/4=3/2*4/7=12/14=6/7
`@` `\text {Ans}`
`\downarrow`
`a,`
`2/5 + x = 2/7`
`=> x = 2/7 -2/5`
`=> x= - 4/35`
Vậy, `x=-4/35`
`b,`
`x + 3/5 = -2/5`
`=> x = -2/5 - 3/5`
`=> x=-1`
Vậy, `x=-1`
`c, `
`x - 8/5 = 3/7`
`=> x=3/7 + 8/5`
`=> x=71/35`
Vậy, `x=71/35`
`d,`
`3/5 - x = 7/3`
`=> x=3/5 - 7/3`
`=> x=-26/15`
Vậy, `x=-26/15`
a) \(\dfrac{2}{5}+x=\dfrac{2}{7}\)
\(\Rightarrow x=\dfrac{2}{7}-\dfrac{2}{5}\)
\(\Rightarrow x=-\dfrac{4}{35}\)
b) \(x+\dfrac{3}{5}=-\dfrac{2}{5}\)
\(\Rightarrow x=-\dfrac{2}{5}-\dfrac{3}{5}\)
\(\Rightarrow x=-1\)
c) \(x-\dfrac{8}{5}=\dfrac{3}{7}\)
\(\Rightarrow x=\dfrac{3}{7}+\dfrac{8}{5}\)
\(\Rightarrow x=\dfrac{71}{35}\)
d) \(\dfrac{3}{5}-x=\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{3}{5}-\dfrac{7}{3}\)
\(\Rightarrow x=-\dfrac{26}{15}\)
a: \(-5x^2\left(2x^2+x-3\right)\)
\(=-10x^4-5x^3+15x^2\)
b: \(4-\left(x+3\right)\left(x-3\right)+\left(x+7\right)^2\)
\(=4-x^2+9+x^2+14x+49\)
\(=14x+62\)
`@` `\text {Ans}`
`\downarrow`
`B(x)-A(x)+C(x)`
`=`\((x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15) + 3x^3 - 7x^2 -4\)
`=`\(x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)
`=`\(\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)+\left(-4x-2x\right)+\left(7+15-4\right)\)
`=`\(-x^3-13x^2-6x+18\)
`C(x)-B(x)-A(x)`
`=`\(3x^3 - 7x^2 -4 - (x^2-5x^3-4x+7) - (-x^3 + 7x^2 +2x - 15)\)
`=`\(3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)
`=`\(\left(3x^3+5x^3+x^3\right)+\left(-7x^2-x^2-7x^2\right)+\left(4x-2x\right)+\left(-4-7+15\right)\)
`=`\(9x^3-15x^2+2x+4\)
a) \(B\left(x\right)-A\left(x\right)+C\left(x\right)\)
\(=\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)+\left(3x^3-7x^2-4\right)\)
\(=x^2-5x^3-4x+7+x^3-7x^2-2x+15+3x^3-7x^2-4\)
\(=\left(-5x^3+x^3+3x^3\right)+\left(x^2-7x^2-7x^2\right)-\left(4x+2x\right)+\left(7-4+15\right)\)
\(=-x^3-13x^2-6x+18\)
b) \(C\left(x\right)-B\left(x\right)-A\left(x\right)\)
\(=\left(3x^3-7x^2-4\right)-\left(x^2-5x^3-4x+7\right)-\left(-x^3+7x^2+2x-15\right)\)
\(=3x^3-7x^2-4-x^2+5x^3+4x-7+x^3-7x^2-2x+15\)
\(=\left(3x^3+5x^3+x^3\right)-\left(7x^2+x^2+7x^2\right)+\left(4x-2x\right)-\left(4+7-15\right)\)
\(=9x^3-15x^2+2x+4\)
b: Ta có: \(4-\left(x+3\right)\left(x-3\right)+\left(x+7\right)^2\)
\(=4-x^2+9+x^2+14x+49\)
=14x+62
a) \(-5x^2\left(2x^2+x-3\right)=-10x^4-5x^3+15x^2\)
b) \(4-\left(x+3\right)\left(x-3\right)+\left(x+7\right)^2=4-x^2+9+x^2+14x+49=14x+62\)
c) \(\left(x-4\right)\left(x^2-2x+7\right)=x^3-2x^2+7x-4x^2+8x-28=x^3-6x^2+15x-28\)
\(2^x+3=2^7\)
\(\Rightarrow2^x+3=128\)
\(\Rightarrow2^x=128-3\)
\(2^x=125\)
Vì 2x luôn là 1 số chẵn mà 125 là số lẻ => Không tìm đc x
Vậy phương trình vô nghiệm
1)2x+3=27
2)2x+3=27
đề là cái nào bn