cmr
x2+y2 > hoặc = 2xy với mọi x y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
a) Ta có: \(M=x^2-2xy+y^2-10x+10y\)
\(=\left(x-y\right)^2-10\left(x-y\right)\)
\(=9^2-10\cdot9=-9\)
a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)
\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)
\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)
nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)
b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)
nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)
\(x^2+2xy+2y^2+y+\frac{1}{2}\)
\(=x^2+2xy+y^2+y^2+y+\frac{1}{2}\)
\(=\left(x+y\right)^2+y^2+y+\frac{1}{2}\)
Có: \(\left(x+y\right)^2\ge0\)
\(y^2\ge y\ge0\Rightarrow y^2+y\ge0\)
\(\frac{1}{2}>0\)
\(\Rightarrow x^2+2xy+2y^2+y+\frac{1}{2}>0\) với mọi x
xét vế trái: \(x^2+2xy+2y^2+y+\frac{1}{2}\) =\(x^2+2xy+y^2+y^2+y+\frac{1}{2}\)
= \(\left(x^2+2xy+y^2\right)+\left(y^2+y+\frac{1}{2}\right)\)
= \(\left(x+y\right)^2+\left(y^2+2.\frac{1}{2}.y+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)\)
= \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}\)
vì \(\left(x+y\right)^2>=0\) và \(\left(y+\frac{1}{2}\right)^2>=0\) => \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2>=0\)
mà 1/4 >0 => \(\left(x+y\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{4}>0\)
Lời giải:
$3x^2+x=4y^2+y$
$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$
$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$
$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$
Gọi $d=(x-y, 4x+4y+1)$
Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.
Từ $(1); (3)\Rightarrow y\vdots d$
Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$
$\Rightarrow d=1$
Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.
Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.
Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$
$=(x+y)^2t^2=[t(x+y)]^2$ là scp
Ta có đpcm.
Giả sử : \(x^2+y^2\ge2xy\forall x;y\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\forall x;y\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)
( điều này luôn đúng )
\(\Rightarrow x^2+y^2\ge2xy\forall x;y\)
\(\Rightarrowđpcm\)
ta có (x+y)2 > hoặc = với mọi x,y
=> x2+ 2xy+y2 > hoặc = 0 nên x2+y2> hoặc bằng 2xy với mọi xy