Cứu mình với bài này khó quá:Tính:E=1+2^3+3^3+..................+100^3+100^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 + 3 + .. +97 + 98 +99 +100
= ( 1 + 100 ) + ( 2+ 99) + ( 3 +98) + .... + (50 + 51)
= 101 + 101 + 101 +... +101
Số số hạng của tổng là:
( 100 - 1) : 1 + 1 = 100 ( số hạng)
Số số 101 trong tổng là: 100 : 2 = 50 số hạng
Tổng là:
= 101 .50 = 5050
có hai cách mà mình giải cách thứ hai thôi nhé
1+2+3+....+97+98+99+100
=(1+100)+(2+99)+(3+97)+......+(50+51)
=101+101+101+101+....+101
mà có:100:2=50(cặp)
=101x50
=5050
dễ quá mà **** cho mình với
Đặt \(A=1-3+3^2-3^3+...-3^{99}+3^{100}\)
\(\Rightarrow3A=3-3^2+3^3-...-3^{100}+3^{101}\)
\(\Rightarrow3A+A=3-3^2+3^3-...-3^{100}+3^{101}+1-3+3^2-3^3+...-3^{99}+3^{100}\)
\(\Rightarrow4A=1+3^{101}\)
\(\Rightarrow A=\dfrac{1+3^{101}}{4}\)
Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\left(đpcm\right)\)
- 1 số bài toán tương tự:
CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)
Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)
32,48 : 0,25 + 67,52 x 4
= ( 32,48 + 67,52) : ( 0,25 x4)
= 100 : 1
= 100
đặt A=100^10+1/100^10-1
B=10^100+1/10^100-3
ta có:\(A=\frac{100^{10}+1}{100^{10}-1}=\frac{100^{10}-1+2}{100^{10}-1}=\frac{100^{10}-1}{100^{10}-1}+\frac{2}{100^{10}-1}=1+\frac{2}{100^{10}-1}\)
\(B=\frac{10^{100}+1}{10^{100}-3}=\frac{10^{100}-3+4}{10^{100}-3}=\frac{10^{100}-3}{10^{100}-3}+\frac{4}{10^{100}-3}=1+\frac{4}{10^{100}-3}=1+\frac{4}{100^{10}-3}\)
vì 10010-1>10010-3
=>\(\frac{4}{100^{10}-1}<\frac{4}{100^{10}-3}\)
=>A<B
đề bài giống này đúng ko bạn nếu đúng thì làm theo nha nhớ k cho mình
E= \(1^3+2^3+3^3+...+99^3+100^3\)
=(1-1)1(1+1)+1+(2-1)2(2-1)+2+...+)(99-1)99(99+1)+99+(100-1) 100(100+1)+100
= 1+2+1.2.3+3+2.3.4+...+100+99.100+101
= (1+2+3+..+100) +(1.2.3+2.3.4+...+99.100.101)
= 5050+25497450
=25502500