K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

Tổng các hệ thức khi bỏ dấu ngoặc là

(3-4+1)2018.(3+4+1)2018=0

.

17 tháng 4 2017

Với mọi đa thức f(x),khi khai triển luôn có dạng : an.xn + an - 1.xn - 1 + an - 2.xn - 2 + ... + a2.x2 + a1.x + a0

\(\Rightarrow f\left(1\right)=a_n+a_{n-1}+a_{n-2}+...+a_2+a_1+a_0\)là tổng các hệ số của f(x)

Đặt đa thức đã cho là f(x) thì tổng các hệ số của f(x) khi bỏ dấu ngoặc trong biểu thức (khai triển) là :

f(1) = (3 - 4 + 1)2006.(3 + 4 + 1)2007 = 02006.72007 = 0

3 tháng 5 2017

Để làm được bài này bạn phải đặt x=1 là tính tổng được hệ só nhé bạn

8 tháng 3 2016

Tổng các hệ số của một đa thức P(x) bất kì bằng giá trị của đa thức đó tại x=1. Vậy tổng các hệ số của đa thức:

P(x)=(3 - 4x + x^2)^2006 . (3 + 4x + x^2)^2007

Bằng P(1)=(3-4+1)^2006 . (3+4+1)^2007=0

Vậy kết quả bằng 0 đó bạn.

8 tháng 3 2016

Tổng cần tìm là: (3-4+1)^2016.(3+4+1)^2007=0

10 tháng 6 2015

Tổng hệ số của đa thức trên sau khi bỏ dấu ngoặc chính là kết quả của đa thức khi x = 1

 Thế x = 1 vào đa thức trên ta được:

  \(\left(3-4.1+1^2\right)^{1998}.\left(3+4.1+1^2\right)^{2002}=0.8^{2002}=0\)

2 tháng 6 2015

Khi bỏ dấu ngoặc trong P(x) ta thu được đa thức P(x) có dạng 

P(x) = an.xn + an-1.xn-1 + an-2.xn-2 + ...+ a1.x + ao

Khi đó, tổng các hệ số của P(x) là an + an-1 + an-2 + ...+ a1 + ao 

mà P(1) =  an + an-1 + an-2 + ...+ a1 + ao 

=> Tổng các hệ số của P(x) bằng P(1) = (3 - 4.1 + 1)1998.(3 + 4.1 + 12)2000 = 0

2 tháng 3 2020

- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :

\(A_{\left(x\right)}=A_{\left(1\right)}=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)

\(=0.\left(3+4.1+1^2\right)^{2005}=0\)

Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .