\(\frac{1}{14}+\frac{1}{28}+\frac{1}{56}+...+\frac{1}{896}=x-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
B = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{7.8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{11.13}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
a) \(\frac{30}{51}\)\(-\)\(\frac{20}{52}\)\(+\)\(\frac{14}{34}-\frac{56}{91}-2\)
\(=\frac{10}{17}-\frac{5}{13}+\frac{7}{17}-\frac{8}{13}-2\)
= (\(\frac{10}{17}\)\(+\frac{7}{17}\)) \(-\)(\(\frac{5}{13}+\frac{8}{13}\)) \(-2\)
= \(1-1-2\)
=\(0-2\)
= -2
k cho mik nha
3/14:1/28-13/21:1/28+29/42:-1/28-8
=3/14.28-13/21.28+29/42.(-28)-8
=3/14.28-13/21.28+-29/42.28-8
=(3/14-13/21+ -29/42).28-8
=-23/21.28-8
=-92/3-8=-116/3
Ta có : \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+...+\) \(\frac{1}{x^2+15x+56}=\frac{1}{14}\)
<=>\(\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)+...+ \(\frac{1}{\left(x+7\right)\left(x+8\right)}=\frac{1}{14}\)
<=> \(\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+...+\frac{1}{x+7}-\frac{1}{x+8}\)= \(\frac{1}{14}\)
<=> \(\frac{1}{x+1}-\frac{1}{x+8}=\frac{1}{14}\)
<=> \(\frac{x+8-x-1}{\left(x+1\right)\left(x+8\right)}=\frac{1}{14}\)
<=>\(\frac{7.14}{14\left(x+1\right)\left(x+8\right)}=\frac{\left(x+1\right)\left(x+8\right)}{14\left(x+1\right)\left(x+8\right)}\)
<=> \(x^2+9x+8=98\)<=> \(x^2+9x-90=0\)
<=> (x-6)(x+15) =0
<=> \(\orbr{\begin{cases}x=6\\x=-15\end{cases}}\)
Vậy phương trình có 2 nghiệm x \(\in\left(6,15\right)\)
==============
- Do ko biết viết dấu ngoặc nhọn nên thay = dấu ngoặc tròn
- Đề ko rõ ràng , lần sau nhớ ghi yêu cầu ?
\(\frac{8}{23}\cdot\frac{46}{24}-x=\frac{1}{3}\)
=> \(\frac{2}{3}-x=\frac{1}{3}\)
=> \(x=\frac{1}{3}\)
\(\frac{10}{12}\div x=\frac{28}{9}\cdot\frac{3}{56}\)
=> \(\frac{10}{12}\div x=\frac{1}{6}\)
=> \(x=\frac{60}{12}=5\)
\(\frac{x-12}{4}=\frac{1}{2}\)
=> \(\left(x-12\right)\cdot2=4\cdot1\)
=> \(2x-24=4\)
=> \(2x=28\)
=> \(x=14\)
a) \(\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-1-\frac{3}{7}+\frac{3}{28}}=\frac{\frac{37}{42}}{\frac{-37}{28}}=\frac{37}{42}.\frac{28}{-37}=\frac{-2}{3}\)
b) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0-\frac{1}{2}=\frac{-1}{2}\\x=\left(\frac{2}{3}-0\right):2=\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-1}{2};\frac{1}{3}\right\}\)
a,\(\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-1-\frac{3}{7}+\frac{3}{28}}=\frac{2.\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}{3.\left(-\frac{1}{3}-\frac{3}{7}+\frac{1}{28}\right)}=\frac{-2}{3}\)
cách này k cần dùng máy tính (hok tốt)
\(\frac{5}{7}+\frac{5}{14}+\frac{5}{28}+\frac{5}{56}+\frac{5}{112}+\frac{5}{224}+\frac{5}{448}+\frac{5}{896}\)
\(=(\frac{5}{7}+\frac{5}{14})+(\frac{5}{28}+\frac{5}{56})+(\frac{5}{112}+\frac{5}{224})+(\frac{5}{448}+\frac{5}{896})\)
\(=\frac{15}{14}+\frac{15}{56}+\frac{15}{224}+\frac{15}{896}\)
\(=(\frac{15}{14}+\frac{15}{224})+(\frac{15}{56}+\frac{15}{896})\)
\(=\frac{255}{224}+\frac{255}{896}=\frac{1275}{896}\)
Rồi tự rút gọn nhé . Nếu số đó ko rút gọn được thì giữ nguyên
Chúc bạn học tốt :>
Đặt: \(A=\frac{1}{14}+\frac{1}{28}+\frac{1}{56}+....+\frac{1}{896}\)
\(\Rightarrow\)\(2A=\frac{1}{7}+\frac{1}{14}+\frac{1}{28}+....+\frac{1}{448}\)
\(\Rightarrow\)\(2A-A=\left(\frac{1}{7}+\frac{1}{14}+....+\frac{1}{448}\right)-\left(\frac{1}{14}+\frac{1}{28}+.....+\frac{1}{896}\right)\)
\(\Rightarrow\)\(A=\frac{1}{7}-\frac{1}{896}=\frac{127}{896}\)
mà \(A=x-3\)
nên \(x-3=\frac{127}{896}\)
\(\Rightarrow\)\(x=3\frac{127}{896}\)
mink cần gấp