Biết \(\frac{a}{a'}+\frac{b'}{b}=1v\text{à}\frac{b}{b'}=\frac{c'}{c}=1\)\(1\).CMR:a.b.c+a'.b'.c'=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a}{1}=\frac{b}{4};\frac{b}{c}=\frac{3}{4}\)
\(\Rightarrow\frac{a}{1}=\frac{b}{4};\frac{b}{3}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{12};\frac{b}{12}=\frac{c}{16}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{12}=\frac{c}{16}\)
Phần còn lại bạn áp dụng như bình thường
Học tốt
Sgk
Từ \(\frac{b}{c}=\frac{3}{4}\)\(\Rightarrow\frac{b}{3}=\frac{c}{4}\)
Ta thấy ở hai tỉ lệ thức \(\frac{a}{1}=\frac{b}{4};\frac{b}{3}=\frac{c}{4}\)đều có 2 phân số có tử là b
\(\Rightarrow\)Ta phải làm chỉ còn 1 phân số có tử là b và bằng các phân số còn lại bằng cách tìm BCNN của 2 mẫu của 2 phân số mà có tử là b hay ta phải đi tìm BCNN ( 3 ; 4 )
\(BCNN\left(3;4\right)=2^2.3=4.3=12\)
Rồi ta nhân mẫu của tỉ lệ thức thứ nhất với 3 để phân số \(\frac{a}{3}\)có mẫu là 12 : \(\frac{a}{1}=\frac{b}{4}=\frac{a}{3}=\frac{b}{12}\left(1\right)\)
Rồi ta nhân mẫu của tỉ lệ thức thứ hai với 4 để phân số \(\frac{a}{4}\)có mẫu là 12 : \(\frac{b}{3}=\frac{c}{4}=\frac{b}{12}=\frac{c}{16}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\frac{a}{4}=\frac{b}{12}=\frac{c}{16}\Rightarrow\frac{4a}{16}=\frac{b}{12}=\frac{c}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{4a}{16}=\frac{b}{12}=\frac{c}{16}=\frac{4a+b-c}{16+12-16}=\frac{8}{12}=\frac{2}{3}\)
\(\Rightarrow a=4.\frac{2}{3}=\frac{8}{3}\)
\(b=12.\frac{2}{3}=8\)
\(c=16.\frac{2}{3}=\frac{32}{3}\)
Vậy \(â=\frac{8}{3};b=8;c=\frac{32}{3}\)
\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow D< 1-\frac{1}{2017}< 1\)
Vậy C > D
Ta bình phương cả 2 vế của phương trình rồi giải: √(1/a^2 + 1/b^2 + 1/c^2)^2 = (1/a + 1/b + 1/c)^2 <=> 1/a^2 + 1/b^2 + 1/c^2 = 1/a^2 + 1/ b^2 + 1/c^2 + 2/ab + 2/ac + 2/bc . Gpt vế phải a có : 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/bc = 1/a^2 + 1/b^2 + 1/c^2 + 2(a+b+c)/abc . Theo đề bài có a+b+c=0 thay vào biểu thức trên ta suy ra được điều phải chứng minh
Áp dụng tính chất của dãy tỉ số bằng nhau
a^2+b^2/c^2+d^2 = a^2/c^2 = b^2 / d^2
=>a/c = b/d
=>a/b = c/d
Chúc bạn học tốt nha
Tự nhiên lục được cái này :'(
3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế ta có điều phải chứng minh
Đẳng thức xảy ra <=> a = b = c
a)7/23<11/28
b)2014/2015+2015/2016>2014+2015/2015+2016
c) A= gì vậy
Câu hỏi của nguyen hong thai - Toán lớp 7 - Học toán với OnlineMath tham khảo
Kết bạn nhé !!! ST