Tìm x, y biết: \(2x^2+9y^2-6xy-6x-12y+29=0\)
Các bạn đừng giải tắt giùm mình nha! Cảm ơn các bạn nhiều nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(2x^2+9y^2-6xy-6x-12y+29=0\)
\(\Leftrightarrow (x^2+9y^2-6xy)+x^2-6x-12y+29=0\)
\(\Leftrightarrow (x-3y)^2+4(x-3y)+x^2-10x+29=0\)
\(\Leftrightarrow (x-3y)^2+4(x-3y)+4+(x^2-10x+25)=0\)
\(\Leftrightarrow (x-3y+2)^2+(x-5)^2=0\)
Vì \((x-3y+2)^2\ge 0; (x-5)^2\geq 0, \forall x\)
Do đó: \((x-3y+2)^2+(x-5)^2\ge 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x-3y+2=0\\ x-5=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=5\\ y=\frac{7}{3}\end{matrix}\right.\)
\(\left(x-2\right)^3+\left(5-2x\right)^3=0\)
\(\Leftrightarrow\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-\left(5x-4x^2-10+4x\right)+25-20x+4x^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-5x+4x^2+10-4x+25-20x+4x^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(9x^2-33x+39\right)=0\)
Phân tích tiếp nhé
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
Theo đề, ta có: \(\dfrac{1+2x}{18}=\dfrac{1+4x}{34}\)
\(\Leftrightarrow34\left(1+2x\right)=18\left(1+4x\right)\)
\(\Leftrightarrow34+68x=18+72x\)
\(\Leftrightarrow34-18=72x-68x\)
\(\Leftrightarrow16=4x\)
\(\Leftrightarrow x=4\)
Khi \(x=4\) vào ta có: \(\dfrac{1+4.4}{34}=\dfrac{1+6.4}{2y^2}\Leftrightarrow\dfrac{1}{2}=\dfrac{25}{2y^2}\)
\(\Leftrightarrow2y^2=50\)
\(\Leftrightarrow y^2=50\)
\(\Leftrightarrow y=\pm5\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
Ta có: \(6x^2\ge0\)
\(2x< 6x^2\)
\(\Rightarrow6x^2+2x\ge0\)
\(\Rightarrow6x^2+2x+2017\ge2017\)
Vậy không tồn tại x khi đa thức trên bằng 0
Ta có: (x^2 + 9y^2 + 4- 6xy -12y+ 4x)+(x^2 -10x+25) =0
(x-3y+2)^2 +(x-5)^2 =0
Vì vế trái luôn luôn lớn hơn hoặc bằng 0 với mọi x,y nên dấu"=" xảy ra khi:
x-3y+2 =0 và x-5=0
5-3y+2 =0 và x=5
y=7/3 và x=5
Vậy x=5 và y=7/3.
Chúc bạn học tốt.
Cảm ơn bạn nhiều nha!