Chứng minh rằng n8+4n7+6n6+4n5+n4 chia hết cho 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`n^8+4n^7+6n^6+4n^5+n^4=n^4(n^4+4n^3+6n^2+4n+1)=n^4(n+1)^4=(n(n+1))^4=(2k)^4=16k^2\vdots16` với `k\inNN`
Lời giải:
Gọi biểu thức là $A$. Đặt $n=2k+1$ với $k$ nguyên.
$A=n^8(n^4-1)-(n^4-1)=(n^4-1)(n^8-1)$
$=(n^4-1)(n^4-1)(n^4+1)$
$=(n-1)^2(n+1)^2(n^2+1)^2(n^4+1)$
$=(2k)^2(2k+2)^2(4k^2+4k+2)^2(n^4+1)$
$=64[k(k+1)]^2(2k^2+2k+1)^2(n^4+1)$
Vì $k(k+1)$ là tích 2 số nguyên liên tiếp nên hiển nhiên chia hết cho 2
$\Rightarrow [k(k+1)]^2\vdots 4$
Với $n$ lẻ thì hiển nhiên $n^4+1\vdots 2$
$\Rightarrow A\vdots 64.4.2=512$ (đpcm)
Đặt: \(A=n^8-n^6-n^4+n^2\)
\(A=\left(n^8-n^6\right)-\left(n^4-n^2\right)\)
\(A=n^6\left(n^2-1\right)-n^2\left(n^2-1\right)\)
\(A=\left(n^2-1\right)\left(n^6-n^2\right)\)
\(A=\left(n-1\right)\left(n+1\right)n^2\left(n^4-1\right)\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left[\left(n^2\right)^2-1\right]\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left(n^2-1\right)\left(n^2+1\right)\)
\(A=n^2\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(A=n\left(n-1\right)\left(n+1\right)n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Ta có: \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3
Còn: \(\left[n\left(n-1\right)\left(n+1\right)\right]\left[n\left(n-1\right)\left(n+1\right)\right]\) sẽ chia hết cho \(3\times3=9\)
Do n sẽ là số lẻ nên \(\left(n-1\right);\left(n+1\right)\) sẽ luôn luôn là số chẵn
Mà: \(\left(n-1\right)\left(n+1\right)\) sẽ chia hết cho 8 vì tích của hai số chẵn liên liếp sẽ chia hết cho 8
Còn \(\left(n+1\right)\left(n-1\right)\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\) sẽ chia hết cho \(8\cdot8\cdot2=128\)
Ta có:
\(\text{Ư}\text{C}LN\left(9;128\right)=1\)
Nên: A ⋮ \(9\cdot128=1152\left(dpcm\right)\)
Đặt \(A=n^4-10n^2+9\)
\(n^4-n^2-9\left(n^2-1\right)=n.n\left(n-1\right)\left(n+1\right)-9\left(n^2-1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 3
\(\Rightarrow A⋮3\)
Lại có: \(A=\left(n^2-1\right)\left(n^2-9\right)=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Do n lẻ, đặt \(n=2k+1\)
\(\Rightarrow A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)
\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+4\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k-1\right)\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên liên tiếp nên luôn chia hết cho 8
\(\Rightarrow A⋮\left(16.8\right)\Rightarrow A⋮128\)
Mà 3 và 128 nguyên tố cùng nhau \(\Rightarrow A⋮\left(128.3\right)\Rightarrow A⋮384\)
Tacó : A = n4 ( n4 +4n3 +6n2 +4n + 1 )
= n4 ( n4 + n3+ 3n3 + 3n2 +3n2 + 3n + n +1)
= n4 ( n + 1 )(n3 +3n2 + 3n + 1 ) = n4 ( n+1 ) (n+1)3
= n4 ( n + 1 )4 = [ n(n +1)]4
Vì n( n+1) là tích 2 số nguyên liên tiếp nên có một thừa số chia hết cho 2.
Do đó : A = [n ( n + 1 )]4 chia hết cho 24 =16 . Vậy : A chia hết cho 16
hay wa