cho tam giác ABC vg tại A ,C=30 do ,BC=10cm
a)tinh AB,AC
b) ke tu A cac duong thang AM ,AN lan luot vg goc vs cac duong phan gia goa trong va ngoai cua B
C/M :MN=AB
c) C/M : tam giác MAB đồng dạng vs tam giác ABC
tìm tỉ số đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: AB/3=AC/4=k
=>AB=3k; AC=4k
Ta có: \(AB^2+AC^2=BC^2\)
=>\(25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔBAC có BM là phân giác
nên MA/AB=MC/BC
=>MA/3=MC/5
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{8}{8}=1\)
=>MA=3cm
1.cho tam giác ABC vuong tai A phan giac AD. biet BD = #Toán lớp 9
1.cho tam giác ABC vuong tai A phan giac AD. biet BD = #Toán lớp 9
Dễ dàng CM được tam giác EBD vuông tại D và có đường cao BA
Ta có góc E1 = góc B1=góc B2=1/2 goc B
Theo công thức tg2a=2tga/(1-tg^2a) ta có
tgB=2tgE1/(1-tg^2E1) <=> 4/3 = 2.\(\frac{6}{EA}\). \(\frac{1}{1-\frac{36}{EA^2}}\)=\(\frac{12}{EA}\).\(\frac{EA^2}{EA^2-36}\)=\(\frac{12EA^2}{EA^2-36}\)
Giải PT ta có EA= 12 \(6\sqrt{5}\)
a) Xét \(\Delta ABC\) vuông tại A ta có:
\(\sin C=\dfrac{AB}{BC}=>sin30=\dfrac{AB}{10}\) => AB = 5cm
Xét tam giác ABC vuông tại A ta có:
\(AC^2+AB^2=BC^2\) => \(AC^2=BC^2-AB^2=10^2-5^2=75\)
=> AC = \(5\sqrt{3}\) cm
b) Xét tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}=60^0\)
Ta có: \(\widehat{ABM}=\widehat{MBC}=\dfrac{\widehat{BAC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\widehat{ABN}=\dfrac{180^0-\widehat{ABC}}{2}=60^0\)
Ta có: \(\widehat{ABM}+\widehat{ABN}=\widehat{NBM}=60^0+30^0=90^0\)
Xét tứ giác AMBN có: \(\widehat{N}=\widehat{M}=\widehat{NBM}=90^0\)
=> AMBN là hình chữ nhật
=> AB = MN (hai đường chéo của hình chữ nhật bằng nhau)
c) Xét \(\Delta MAB\) và \(\Delta ABC\) có:
\(\widehat{BMA}=\widehat{BAC}=90^0\)
\(\widehat{MBA}=\widehat{ACB}=30^0\)
Do đó: \(\Delta MAB\sim\Delta ABC\left(g-g\right)\)