Giúp mình 2 câu này vs ạ (cần cách giải chứ ko cần đáp án)
Giải bpt :
a)3x^2-x+1>0
b)2x^2-5x+4<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|2x-3\right|=3-2x\)
\(ĐK:x\le\dfrac{3}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3-2x\\3-2x=3-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\0=0\left(đúng\right)\end{matrix}\right.\)
Vậy \(S=\left\{x\in R;x=\dfrac{3}{2}\right\}\)
Người hạnh phúc và may mắn nhất trên đời khi làm một điều gì đó tốt đẹp và mang lại niềm vui cho mọi người,một phép lạ sẽ đến với bạn khi làm một việc tốt.Hay ghi nhớ thông điệp này và gửi cho 30 đến 50 người.Sẽ có điều bất ngờ và may mắn đến với bạn sau ngày hôm đó.Nếu bạn không gửi đi ngay sau khi đọc xong,bạn sẽ luôn bị xui xẻo Ai thương mẹ thì gửi cái này cho 15 người ko gửi mà xoá đi mẹ bạn sẽ chết trong vòng 2 ngày nữa
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ góc trái khung soạn thảo). Viết đề thế này khó đọc lắm.
Giải tiêu biểu câu a nhé.
a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)
\(\Leftrightarrow19x+5=0\)
\(\Leftrightarrow x=-\frac{5}{19}\)
1. Những cây sẵn trong tự nhiên, tự bản thân nó được dùng để trang trí: cây hoa (hoa hồng, hoa cẩm chướng..), cây tùng, cây sanh.
2. Phương pháp sinh sản vô tính: giâm cành bằng cát, ghép, chiết cành, nuôi cấy mô tế bào.
phương pháp sinh sản hữu tính: thụ phấn trong tự nhiên.
3. chọn chậu cây cảnh dựa trên các yếu tố: chất liệu, kích thước,
4. tránh hư hỏng do va đập cơ học
5. Sử dụng axit abxixic để ức chế sinh trưởng.
6. kỹ thuật sản xuất, an toàn thực phẩm, môi trường làm việc đảm bảo, nguồn gốc sản phẩm rõ ràng.
Lời giải:
a) Ta có:
\(3x^2-x+1=3(x^2-\frac{1}{3}x)+1\)
\(=3(x^2-\frac{1}{3}x+\frac{1}{36})+\frac{11}{12}\)
\(=3(x-\frac{1}{6})^2+\frac{11}{12}\). Vì \((x-\frac{1}{6})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow 3x^2-x+1=3(x-\frac{1}{6})^2+\frac{11}{12}\geq \frac{11}{12}>0, \forall x\in\mathbb{R}\)
Do đó BPT \(3x^2-x+1>0\) luôn đúng với mọi $x$ thực hay tập nghiệm của BPT là \(x=\mathbb{R}\)
b) \(2x^2-5x+4=2(x^2-\frac{5}{2}x)+4\)
\(=2(x^2-\frac{5}{2}x+\frac{25}{16})+\frac{7}{8}\)
\(=2(x-\frac{5}{4})^2+\frac{7}{8}\)
Vì \((x-\frac{5}{4})^2\geq 0, \forall x\in\mathbb{R}\) nên \(2x^2-5x+4\geq 2.0+\frac{7}{8}>0\) với mọi số thực $x$
Do đó BPT \(2x^2-4x+5< 0\) vô nghiệm.