- Cho a,b>= 0chứng minh rằng a+b>= 2√a.√bb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$a+b+c \ge \sqrt{ab}+\sqrt{bc}+\sqrt{ca}$
$\Leftrightarrow 2a+2b+2c \ge 2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}$
$\Leftrightarrow a-2\sqrt{ab}+b+b-2\sqrt{bc}+c+c-2\sqrt{ca}+a \ge 0$
$\Leftrightarrow (\sqrt{a}-\sqrt{b})^2+(\sqrt{c}-\sqrt{b})^2+(\sqrt{a}-\sqrt{c})^2 \ge 0$ luôn đúng với $a,b,c \ge 0$
Dấu "=" xảy ra khi a=b=c
Ta có: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\)
\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)(luôn đúng với mọi a,b,c không âm)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)
\(\Rightarrow VT=\dfrac{y^2+z^2-x^2}{2x}+\dfrac{x^2+z^2-y^2}{2y}+\dfrac{x^2+y^2-z^2}{2z}\)
\(VT\ge\dfrac{\left(y+z\right)^2}{4x}+\dfrac{\left(x+z\right)^2}{4y}+\dfrac{\left(x+y\right)^2}{4z}-\dfrac{1}{2}\left(x+y+z\right)\)
\(VT\ge\dfrac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}-\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\left(x+y+z\right)\)
\(VT\ge\dfrac{1}{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(VT\ge\dfrac{1}{2}\left(\sqrt{\dfrac{1}{2}\left(a+b\right)^2}+\sqrt{\dfrac{1}{2}\left(b+c\right)^2}+\sqrt{\dfrac{1}{2}\left(c+a\right)^2}\right)\)
\(VT\ge\dfrac{a+b+c}{\sqrt{2}}\) (đpcm)
Ta có a> 2 và b>2 nên a(b-2)>0 và b(a-2) >0.
Vậy a(b-2)+b(a-2) >0 <=> 2[ab -a -b] >0 <=> ab > a+ b
Xét : 2ab-2.(a+b)
= 2ab-2a-2b
= (ab-2a)+(ab-2b)
= a.(b-2)+b.(a-2)
Vì a>2 ; b>2 => a-2 > 0 ; b-2 > 0
=> a.(b-2)+b.(a-2) > 0
<=> 2ab > 2.(a+b)
<=> ab > a+b
Tk mk nha
Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab
Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1 ta có:
1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4
Áp dụng bđt 4xy ≤ (x + y)² ta có:
1/2ab = 2/4ab ≥ 2/(a + b)² = 2
=> VT ≥ 4 + 2 = 6
Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½
1a)Xét a2 + 5 - 4a =a2 - 4a + 4+1=(a - 2)2+1\(\ge\)1 hay (a -2)2 + 1 > 0
\(\Rightarrow\)Đpcm
b)Xét 3(a2 + b2 + c2) -(a + b +c)2 =3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2ac - 2bc
=2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc
=(a - b)2 + (a - c)2 + (b - c)2\(\ge\)0 (với mọi a,b,c)
\(\Rightarrow\)Đpcm
2)Xét A=\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+c+b\right)=3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\)
áp dụng cô-sy
\(\Rightarrow\)A\(\ge\)9
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)