K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

\(a,4^x+4^{x+1}=80\)

\(\Leftrightarrow4^x.1+4^x.4^1=80\)

\(\Leftrightarrow4^x.1+4^x.4=80\)

\(\Leftrightarrow4^x.\left(1+4\right)=80\)

\(\Leftrightarrow4^x.5=80\)

\(\Leftrightarrow4^x=80:5\)

\(\Leftrightarrow4^x=16\)

\(\Leftrightarrow4^x=4^2\)

\(\Rightarrow x=2\)

29 tháng 7 2018

\(a)3^x\cdot81^{2x+1}=81\\ 3^x\cdot\left(3^4\right)^{2x+1}=81\\ 3^x\cdot3^{8x+4}=3^4\\ 3^{9x+4}=3^4\\ \Leftrightarrow9x+4=4\\ \Leftrightarrow9x=0\\ \Rightarrow x=0\)

\(b)4^x-25=89\\ \Leftrightarrow4^x=64\\ \Leftrightarrow4^x=4^3\\ \Rightarrow x=3\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

AH
Akai Haruma
Giáo viên
31 tháng 7 2021

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

15 tháng 10 2017

\(\left|x+1\right|,\left|x-2\right|,\left|x+3\right|\ge0\)

\(6\ge0\Rightarrow x\ge0\)

\(\left|x+1\right|+\left|x-2\right|+\left|x+3\right|=6\)

\(\Rightarrow\left(x+1\right)+\left(x-2\right)+\left(x+3\right)=6\)

\(\Rightarrow\left(x+x+x\right)+\left(1-2+3\right)=6\)

\(\Rightarrow3x+2=6\)

\(\Rightarrow3x=6-2\)

\(\Rightarrow3x=4\)

\(\Rightarrow x=\frac{4}{3}\)

21 tháng 6 2018

a) 2 + 4 + 6 + ... + 2x = 210

=> 2(1+2+3+4+...+x) = 210

1 + 2 + 3 + .. + x = 210 : 2

1 + 2 + 3 + ... + x = 105

=> Ta có: (x+1)x:2 = 105

(x+1)x = 105.2

(x+1)x = 210

=> (x+1)x = 210 = 15.14

Vậy => x = 14

21 tháng 6 2018

a) 2+4+6+...+2x=210

<=>  {[(2x-2):2+1]:2}.(2x+2) =210 

<=> {[2(x-1):2+1]:2}.2(x+1) =210 

<=> [(x-1)+1]:2.2(x+1) =210

<=> (x-1+1)(x+1) =210

<=> x(x+1) =210

Vì 14.15=210 nên x=14

b) x + (x - 1) + (x - 2) + ....+ (x - 50) = 255

=> x+x-1+x-2+....+x-50 = 255

=> 51.x-(1+2+3+....+50) = 255

=> 51.x - 1275               = 255

=> 51.x                         = 1530

=> x                              = 1530 : 51

=> x                              = 30

c) (x+1)+(x+2)+....+(x+100)=5750

=> (x+x+...+x)+(1+2+3+...+100)=5750

=> 100x      + 5050                   = 5750

=> 100x                                   = 700

=> x                                         = 700 : 100

=> x                                         = 7

27 tháng 7 2018

a) \(500< 2^{x+1}< 1000\Leftrightarrow2^8< 500< 2^{x+1}< 1000< 2^{10}\)

\(\Rightarrow8< x+1< 10\Rightarrow7< x< 9\)

Do x là số tự nhiên nên x = 8.

b) \(\frac{1}{16}.2^x.4^{x+2}=64\)

\(\Leftrightarrow2^x.2^{2x+4}=1024\Leftrightarrow2^{3x+4}=2^{10}\)

\(\Leftrightarrow3x+4=10\Leftrightarrow x=2\)

19 tháng 1 2018

a,  (x-5)x=0 

->x=0 và x-5=0 

->x=0 và x=5

20 tháng 7 2021

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)