22/1.3.32/2.4....592/58.60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{59^2}{58.60}\)
\(=\frac{2^2.3^2.4^2....59^2}{1.3.2.4.3.5....58.60}\)
\(=\frac{\left(2.3.4...59\right)\left(2.3.4...59\right)}{\left(2.3.4...58\right)\left(3.4.5....60\right)}\)
\(=\frac{59.2}{60}=\frac{59}{30}\)
22/1.3*32/2.4*42/3.5....592/58.60
=(2.3.4....59)(2.3....59)/(1.2.3....58)(3.4.5...60)
=59.2/60
=1 29/30
=59/30
\(=\frac{2\times2}{1\times3}\times\frac{3\times3}{2\times4}\times\frac{4\times4}{3\times5}\times...\times\frac{59\times59}{58\times60}\)
\(=\frac{2\times3\times4\times...\times59}{1\times2\times3\times...\times58}\times\frac{2\times3\times4\times...\times59}{3\times4\times5\times...\times60}\)
\(=\frac{59}{1}\times\frac{2}{60}=59\times\frac{1}{30}=\frac{59}{30}\)
**** nha
a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)
=> đpcm
Study well ! >_<
Bg
a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}.\frac{100^2}{100.101}\)
\(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)
\(=\frac{1^2}{101}\)
\(=\frac{1}{101}\)
Ghi chú: \(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)--> 22 chịt tiêu 2.2 (trên và dưới) làm thế này mãi đến khi còn \(\frac{1^2}{101}\).
b) \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{59^2}{58.60}\)
=\(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)
= \(\frac{2}{1}.\frac{59}{60}\)
= \(\frac{59}{30}\)
Ghi chú: \(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)--> chịt tiêu liên tục, còn \(\frac{2}{1}.\frac{59}{60}\).
B = 2 3 + 3. 1 9 0 − 2 − 2 .4 + − 2 2 : 1 2 .8 = 8 + 3.1 − 1 4 .4 + 4 : 1 2 .8 = 10 + 64 = 74