K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I don't now

mik ko biết 

sorry 

......................

25 tháng 7 2018

Nhận thấy:  \(x^2\ge0;\)\(y^2\ge0\)

=>    \(x^2+y^2\ge0\)

nên  \(Q=x^2+y^2+36\ge36\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy  MIN \(Q=36\)khi  \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)

6 tháng 11 2021

\(a,\Leftrightarrow\left(x+3\right)^2-4\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x+3-4x+12\right)=0\\ \Leftrightarrow\left(x+3\right)\left(15-3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(b,=x^2\left(y-1\right)-\left(y-1\right)^2=\left(y-1\right)\left(x^2-y+1\right)\)

25 tháng 8

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36

= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36

= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36

= x² + y² + 36

b) Do x² ≥ 0 với mọi x ∈ R

y² ≥ 0 với mọi x ∈ R

Q = x² + y² + 36 ≥ 36 với mọi x ∈ R

Q nhỏ nhất khi x² + y² = 0

⇒ x = y = 0

Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

16 tháng 12 2018

Ta có

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

16 tháng 12 2021

Chọn B

8 tháng 9 2018

Chọn B

Ta có:  x - y 2  =  x 2 -2xy+ y 2  = ( x 2 + y 2 ) - 2xy = 26 - 2.5=16

7 tháng 6 2017

Ntu là j z bn

7 tháng 6 2017

là nhân tử bạn nhé

20 tháng 7 2021

a) x2-4y2-x++2y

= x2-(2y)2-x+2y

= (x-2y)(x+2y)-(x-2y)

=(x-2y)(x+2y-1)

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

23 tháng 10 2021

a: ta có: \(P=x^2+10x+27\)

\(=x^2+10x+25+2\)

\(=\left(x+5\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-5