Giari: \(\sqrt{x^2+2x+1}\) = \(\sqrt{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:x\in\left[\frac{7}{2};5\right]\)
PT\(\Leftrightarrow\left(\sqrt{x-3}-1\right)+\left(\sqrt{5-x}-1\right)+\left(\sqrt{2x-7}-1\right)-\left(x-4\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\frac{x-4}{\sqrt{x-3}+1}-\frac{x-4}{\sqrt{5-x}+1}+\frac{2\left(x-4\right)}{\sqrt{2x-7}+1}-\left(x-4\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\right)=0\)
Vi \(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\ne0\)(voi moi \(x\in\left[\frac{7}{2};5\right]\)
\(\Rightarrow x=4\)
Vay nghiem cua PT la \(x=4\)
\(\sqrt{6x^2-12x+7}=x^2-2x\)
\(\Leftrightarrow\sqrt{6x^2-12x+7}=\dfrac{6x^2-12x+7-7}{6}\left(1\right)\)
Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow t=\dfrac{t^2}{6}-\dfrac{7}{6}\)
\(\Leftrightarrow t^2-6t-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=7\left(TM\right)\\t=-1\left(loại\right)\end{matrix}\right.\)
t=7\(\Rightarrow\sqrt{6x^2-12x+7}=7\)
\(\Leftrightarrow6x^2-12x+7=49\)
\(\Leftrightarrow x^2-2x-7=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1+2\sqrt{2}\left(TM\right)\\x=1-2\sqrt{2}\left(TM\right)\end{matrix}\right.\)
\(\sqrt{x^2-4x+5}=2x^2-8x\)
\(\Leftrightarrow\sqrt{x^2-4x+5}=2\left(x^2-4x+5\right)-10\)(1)
đặt \(t=\sqrt{x^2-4x+5}\) (t\(\ge\)0)
\(\left(1\right)\Leftrightarrow t=2t^2-10\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(loại\right)\\t=\dfrac{5}{2}\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2-4x+5}=\dfrac{5}{2}\)
\(\Leftrightarrow x-4-\dfrac{5}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{21}}{2}\left(TM\right)\\x=\dfrac{4-\sqrt{21}}{2}\left(TM\right)\end{matrix}\right.\)
1: =>|2x-1|=5
=>2x-1=5 hoặc 2x-1=-5
=>2x=6 hoặc 2x=-4
=>x=3 hoặc x=-2
2: \(\Leftrightarrow2\sqrt{x-3}+\dfrac{1}{3}\cdot3\sqrt{x-3}-\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
=>x-3=4
hay x=7
5: \(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=2 hoặc x=-1
đkxđ: x≥-1
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)
\(\Leftrightarrow\left(x+1\right)^2=x+1\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\Leftrightarrow x=-1\end{matrix}\right.\)(t/m)
Vậy pt có 2 nghiệm.......
\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow x^2+2x+1=x+1\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)