2. a)S=1-2+2^2-2^3+...........+2^2014 tính S.
b) So sánh: A=2^2013+3/2^2014+3 và B=2^2014+3/2^2015+3.
c) tìm các số tự nhiên a,b :a/3+b/4=a+b/3+4.
3. tìm các số tự nhiên x,y biết: (2^x+1) (2^x+2) (2^x+3) (2^x+4)-5^y=11879.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a. Số chẵn nhỏ nhất có 2 chữ số : 10
Số chẵn lớn nhất có 2 chữ số 98
=> Số số hạng từ 10 đến 98 là :
(98 - 10) : 2 + 1 = 45 số
=> Tổng của chúng là : 45.(98 + 10) : 2 = 2430
b) Số lẻ nhỏ nhất có 3 chữ số : 101
Số lẻ lớn nhất có 3 chữ số : 999
=> Số số hạng của dãy là : (999 - 101) : 2 + 1 = 450 số
=> Tổng của chúng là : 450 x (999 + 101) : 2 = 247500
2) a, Ta có A = 2019.2021 = (2020 - 1).(2020 + 1) = 2020.2020 - 2020 + 2020 - 1 = 2020.2020 - 1 < 2020.2020 = B
=> A < B
b. Ta có C = 53.35 - 18 = 53.(34 + 1) - 18 = 53.34 + 53 - 18 = 53.34 + 35 = B
=> B = C
c. Ta có M = 2014.2015 - 1 = (2013 + 1).2015 - 1 = 2013.2015 + 2015 - 1 = 2013.2015 + 2014 = N
=> M = N
Bài làm
a) Tổng các số tự nhiên chẵn có 2 chữ số là:
10 + 12 + 14 + 16 + ... + 96 + 98
Số số hạng là:
( 98 - 10 ) : 2 + 1 = 45 ( số hạng )
Tổng là:
( 98 + 10 ) x 45 : 2 = 2430
b) Tổng các số tự nhiên lẻ có ba chữ số là:
101 + 103 + 105 + ... + 996 + 997 + 999
Số số hạng là:
( 999 - 101 ) : 2 + 1 = 450 ( số hạng )
Tổng là:
( 999 + 101 ) x 459 : 2 = 247500
Bài 2:
a) Ta có: A = 2019 . 2021
A = ( 2020 - 1 )( 2020 + 1 )
A = [( 2020 - 1 ) * 2020 ] + [ ( 2020 - 1 ) * 1 ]
A = ( 2020 * 2020 - 2020 ) + ( 2020 - 1 )
A = 2020 * 2020 - 2020 + 2020 - 1
A = 2020 * 2020 - 1
Mà B 2020 * 2020
=> 2020 * 2020 - 1 < 2020 * 2020
hay A < B
b) C = 35 * 53 - 18 và D = 35 + 53 * 34
Ta có: D = 35 + 53 . 34
D = 35 + 53 * ( 35 - 1 )
D = 35 + 53 * 35 - 53
D = 53 * 35 - 18
Mà C = 35 * 53 - 18
=> C = D
~ Maẹ bắt ngủ r, xl ~
a) \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|=2007\)
Ta có: \(\left|x-3\right|\ge0\forall x\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2\ge\left(0+2\right)^2=2^2=4\)
Lại có: \(\left|y+3\right|\ge0\forall y\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|\ge4+0=4\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)
\(\Rightarrow P_{MIN}=2011\)
Dấu "=" xảy ra khi \(\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\y=-3\end{cases}}}\)
Vậy \(P_{MIN}=2011\) tại \(\orbr{\begin{cases}x=3\\y=-3\end{cases}}\)