K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

A B C D E K

p/s:  do bạn chỉ cần hình nên mk chỉ vẽ hình thôi đó, hk tốt

4 tháng 8 2020

a)

Ta có: góc B + góc C = 90 độ 

Mà góc B = 50 độ

\(\Rightarrow\) góc C = 90 độ - 50 độ = 40 độ

b)

Xét Δ ABD và Δ EBD có:

AB = EB (gt)

góc ABD = góc EBD (gt)

chung BD

\(\Rightarrow\) Δ ABD = Δ EBD (c-g-c)

c)

Vì Δ ABD = Δ EBD (câu b)

\(\Rightarrow\) góc BAD = góc BED

Mà góc BAD = 90 độ nên góc BED = 90 độ

\(\Rightarrow\)DE \(\perp\) BC

d)

Vì Δ ABD = Δ EBD (câu b)

\(\Rightarrow\) AD = ED

Xét Δ ADK và Δ EDC có:

góc DAK = góc DEC = 90 độ

AD = ED (cmt)

góc ADK = góc EDC (đ²)

\(\Rightarrow\) Δ ADK = Δ EDC (cgv - gn)

\(\Rightarrow\) DK = DC và AK = EC ( 2 cạnh tương ứng )

e)

Ta có:

BA = BE (gt)

AK = EC (câu d)

\(\Rightarrow\) BA + AK = BE + EC \(\Rightarrow\) BK = BC \(\Leftrightarrow\) Δ BKC cân tại B (định nghĩa)

Mà BD là phân giác góc CBK

\(\Rightarrow\) BD vừa là phân giác vừa là đường cao của Δ BKC

\(\Rightarrow\) BD ⊥ CK

#Tiểu Cừu

4 tháng 8 2020

A B C D E k 1 2 O

a) XÉT  \(\Delta ABD\)VÀ \(\Delta EBD\)

BD LÀ CẠNH CHUNG

\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)

AB = BE (GT)

=> \(\Delta ABD\)=\(\Delta EBD\)(C-G-C)

C)  VÌ  \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=> \(\widehat{BAD}=\widehat{BED}=90^o\)

=> DE VUÔNG GÓC VỚI BC (ĐPCM )

D) vì \(\Delta ABD\)=\(\Delta EBD\)(CMT )

=> AD = ED ( HAI CẠNH TƯƠNG ỨNG )

XÉT \(\Delta ADK\)VÀ \(\Delta EDC\)CÓ 

\(\widehat{KAD}=\widehat{CED}=90^o\)

AD = ED (CMT)

\(\widehat{ADK}=\widehat{EDC}\left(Đ^2\right)\)

=> \(\Delta ADK\)=\(\Delta ADK\)(G-C-G)

=> DK = DC (ĐPCM) 

=> AK = EC (ĐPCM)

e ) vì \(\Delta ABD\)=\(\Delta EBD\)(CMT)

=>\(\widehat{ADB}=\widehat{EDB}\)

TA CÓ 

\(\widehat{ADB}=\widehat{D_1}\)(ĐỐI DỈNH)

\(\widehat{EDB}=\widehat{D_2}\)(ĐỐI ĐỈNH)

MÀ  \(\widehat{ADB}=\widehat{EDB}\)

=> \(\widehat{D_1}=\widehat{D_2}\)

GỌI O LÀ GIAO ĐIỂM CỦA BD LÀ KC

XÉT \(\Delta KDO\)VÀ \(\Delta CDO\)CÓ 

\(KD=CD\left(cmt\right)\)

\(\widehat{D_1}=\widehat{D_2}\)(CMT)

DO LÀ CẠNH CHUNG

=> \(\Delta KDO\)=\(\Delta CDO\)(C-G-C)

=> \(\widehat{KOD}=\widehat{COD}\)

MÀ HAI GÓC NÀY KỀ BÙ

\(\Rightarrow\widehat{KOD}=\widehat{COD}=\frac{180^o}{2}=90^o\)

\(\Rightarrow BD\perp CK\left(đpcm\right)\)

17 tháng 12 2020

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

b) Ta có: ΔABD=ΔEBD(cmt)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

22 tháng 12 2021

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

22 tháng 12 2021

a) Thấy 

Từ đây ta xét t/g MAC và BAN ta có:

=>MA=BA; AC=AN

=>

=>ΔMAC=ΔBAN(c−g−c)⇒MC=BNΔMAC=ΔBAN(c−g−c)⇒MC=BN

đpcm.

b)

Ta gọi giao điểm của MC  và BN là 1 điểm D

Ta có: ˆDBA=ˆDMA(ΔMAC=ΔBAN(c−g−c))DBA^=DMA^(ΔMAC=ΔBAN(c−g−c))

Nên ˆMBD+ˆBMD=ˆMBA+ˆDBA+ˆBMD=ˆMBA+ˆDMA+ˆBMD=ˆMBAMBD^+BMD^=MBA^+DBA^+BMD^=MBA^+DMA^+BMD^=MBA^

+ˆBMA=90o+BMA^=90o

Xét t/g MBD có ˆMBD+ˆBMD=90o⇒ˆBMD=90oMBD^+BMD^=90o⇒BMD^=90o

⇒BN⊥MC⇒BN⊥MC

Bổ sung D giao điểm nhé vào hình nha bn.

c) Ta giả sử như ABC đều cạnh 4cm (theo đề bài) thì sẽ có: AM=AC=AB=NA=4cm

Áp dụng định lý pi-ta-go ta có:

Cho t/g MAB và NAC thì MB=NC=4√2(cm)42(cm)

Khi ABC đều cạnh 4cm thì AMC = NAB là t/g  vuông cân có  góc ở đỉnh : 90o+60o=150o

=>ˆAMC=ˆACMAMC^=ACM^= (180o-150o):2=15o

Thì 

Lại có 

Vì t/gMAN cân tại A nên = (180o-120o) : 2 =30o

=> 

=>

=> BC//MN ( so le trong)

đpcm.

16 tháng 12 2021

cứu với mình cần gấp huhu

16 tháng 12 2021

a: Xét ΔABD và ΔEBD có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

22 tháng 12 2021

Answer:

Phần c) thì nhờ các cao nhân khác thoii.

C E D A B 1 2

a) Ta xét tam giác ABD và tam giác EBD:

AB = EB (gt)

BD cạnh chung

\(\widehat{B_1}=\widehat{B_2}\)

Vậy tam giác ABD = tam giác EBD (c.g.c)

\(\Rightarrow DE=DA\)

b) Theo phần a), tam giác ABD = tam giác EBD

\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)

11 tháng 1 2022

a) Xét tam giác ABD và tam giác EBD:

+ AB = EB (gt).

+ BD chung.

\(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).

\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).

b) Tam giác ABD = Tam giác EBD (cmt).

\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).

Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).

\(\Rightarrow\) \(\widehat{BED}=90^o\)

c) Xét tam giác ABE: BA = BE (gt).

\(\Rightarrow\) Tam giác ABE cân tại B.

Mà BD là phân giác (gt).

\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).

\(\Rightarrow\) \(BD\perp AE.\)