K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Lời giải:

$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$

Tổng số hạng của $M$: $(100-2):2+1=50$

$M=(100+2).50:2=2550$

Tổng số hạng của $N$: $(99-1):2+1=50$

$N=(99+1).50:2=2500$

$A=M-N=2550-2500=50$

 

Sửa đề: A=100+98+96+...+2-99-97-...-1

=100-99+98-97+...+2-1

=1+1+...+1

=50

9 tháng 1 2019

1-2-3+4+5-....+96+97-98-99+100

=(1-2-3+4)+....+(97-98-99+100)

=0+.........+0

=0

9 tháng 1 2019

1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 96 + 97 - 98 - 99 + 100

Ta thấy tổng trên có 100 số hạng. Ta chia tổng thành tường nhóm, mỗi nhóm có 4 số hạng như sau:

1 - 2 - 3 + 4 + 5 - 6 - 7 - 8 + ... + 96 + 97 - 98 - 99 + 100

= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 97 - 98 - 99 + 100 )

= 0 + 0 + ... + 0

= 0

13 tháng 10 2018

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\frac{101.102}{2}}{51}\)

\(=101\)

7 tháng 6 2017

Ta có:

\(B=2\cdot\left(1\cdot99+2\cdot98+...+50\cdot50\right)-50\cdot50\)

\(=2\cdot\left(1\cdot99+2\cdot\left(99-1\right)+...+50\cdot\left(99-49\right)\right)-50\cdot50\)-

\(=2\cdot\left(1\cdot99+2\cdot99-1\cdot2+...+50\cdot99-49\cdot50\right)-50\cdot50\)

\(=2\cdot\left(\left(1\cdot99+2\cdot99+...+50\cdot99\right)-\left(1\cdot2+2\cdot3+...+49\cdot50\right)\right)-50\cdot50\)

\(=2\cdot\left(\frac{99\cdot50\cdot51}{2}-\frac{49\cdot50\cdot51}{3}\right)-50\cdot50\)

\(=2\cdot84575-2500\)

\(=166650\)

Vậy B=166650

7 tháng 6 2017

A=1.99+2.98+3.97+...+97.3+98.2+99.1
A=1.99+2.(99−1)+3.(99−2)+...+98.(99−97)+99.(99−98)
A=1.99+2.99−1.2+3.99−2.3+98.99−97.98+99.99−98.99
=(1.99+2.99+3.99+...+98.99+99.99)−(1.2+2.3+3.4+...+97.98+98.99)
=99.(1+2+3+...+98+99)−(1.2+2.3+3.4+...+97.98+98.99)
=99.4950−(1.2+2.3+3.4+97.98+98.99)
Mà 1.2+2.3+3.4+...97.98+98.99
=​ 1/3 ​.[1.2+2.3.(4−1)+3.4.(5−2)+98.99.(100−97)]
=1/3​​.98.99.100

=323400
⇒A=99.4950−323400=166650

8 tháng 6 2017

A = 1 . 2  + 2 . 3 + 3 . 4 + 4 . 5 + ... + 98 . 99

3A = 1 . 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + 4 . 5 . 3 + ... + 98 . 99 . 3

3A = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + 4 . 5 . ( 6 - 3 ) + ... + 98 . 99 . ( 100 - 97 )

3A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + 4 . 5 . 6 - 3 . 4 . 5 + ... + 98 . 99 . 100 - 97 . 98 . 99

3A = 98 . 99 . 100

A = \(\frac{98.99.100}{3}\)

A = 323400

7 tháng 6 2017

dễ lắm 

chờ 5 phút nhé 

để có việc