so sánh: A=\(\dfrac{10^{15}+1}{10^{16}+1}\) và B = \(\dfrac{10^{16}+1}{10^{17}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
10A=1016+10/1016+1=1+(9/1016+1)
10B=1017+10/1017+1=1+(9/1017+1)
Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B
TRƯỚC TIÊN TA SO SÁNH 10 VỚI 10B
10A=10^16+10/10^16+1=1\(\frac{9}{16+1}\)
10B=10^17+10/10+17+1=1\(\frac{9}{17+1}\)
VÌ 9/16+1>9/17+1
=>10A>10B
=>A>B
AI TÍCH MK ;MK TÍCH LẠI
a, Ta có : \(10^{15}\cdot11=10^{15}\left(10+1\right)=10^{16}+10^{15}\)
Vì \(10^{16}+10^{15}>10^{16}+10\)
\(\Rightarrow\dfrac{10^{16}+10^{15}}{10^{16}+1}>\dfrac{10^{16}+10}{10^{16}+1}\)
Hay A>B
b, Ta có : \(C=\dfrac{10^{10}+1}{10^{10}-1}=\dfrac{10^{10}}{10^{10}-1}+\dfrac{1}{10^{10}-1}\)
\(D=\dfrac{10^{10}-1}{10^{13}-3}=\dfrac{10^{10}}{10^{13}-3}+\dfrac{-1}{10^{13}-3}\)
Vì \(\dfrac{10^{10}}{10^{10}-1}>\dfrac{10^{10}}{10^{13}-3};\dfrac{1}{10^{10}-1}>\dfrac{-1}{10^{13}-3}\)
\(\Rightarrow\dfrac{10^{10}+1}{10^{10}-1}>\dfrac{10^{10}-1}{10^{13}-3}\)
Hay C > D
A=10^15+1/10^16+1
=>10A=1+9/10^16+1
B=10^16+1/10^17+1
=>10B=1+9/10^17+1
=>10A>10B=>A>B
Vậy:A>B
\(10A=\frac{10^{16}+10}{10^{16}+1}=\frac{10^{16}+1+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}=\frac{10^{17}+1+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Nhận thấy: \(\frac{9}{10^{17}+1}< \frac{9}{10^{16}+1}\)=> 10B < 10A
=> A > B
A = ( 10^15+1 ) / ( 10^16+1 ) => 10A = ( 10^16+10 ) / ( 10^16+1 ) = 1 + ( 9/10^15+1 )
B = ( 10^16+1 ) / ( 10^17+1 ) => 10B = ( 10^17+10 ) / ( 10^17+1 ) = 1 + ( 9/10^16+1 )
Vì 10^15+1 < 10^16+1 nên 9/10^15+1 > 9/10^16+1 => 1 + ( 9/10^15+1 ) > 1 + ( 9/10^16+1 )
Vậy A > B
Có:\(10A=\dfrac{10^{16}+10}{10^{16}+1}=\dfrac{10^{16}+1+9}{10^{16}+1}=\dfrac{10^{16}+1}{10^{16}+1}+\dfrac{9}{10^{16}+1}=1+\dfrac{9}{10^{16}+1}\)
\(10B=\dfrac{10^{17}+10}{10^{17}+1}=\dfrac{10^{17}+1+9}{10^{17}+1}=\dfrac{10^{17}+1}{10^{17}+1}+\dfrac{9}{10^{17}+1}=1+\dfrac{9}{10^{17}+1}\)
\(1+\dfrac{9}{10^{16}+1}>1+\dfrac{9}{10^{17}+1}\Rightarrow A>B\)
Vậy \(A>B\)