K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

(2x+1)(y+2)=4

⇒(2x+1) và (y+2) ∈ Ư (4) = { 1,-1,2,-2,4,-4 }

⇒2x+1=1        ⇒2x=1-1=0            ⇒x=0:2=0

   y+2=4             y=4-2=2                  y=2

⇒2x+1=-1      ⇒2x=-1-1=-2        ⇒x=-2:2=-1

   y+2=-4           y=-4-2=-6             y=-6

⇒2x+1=2        ⇒2x=2-1=1          ⇒x=1:2=0,5

   y+2=-2           y=-2-2=-4             y=-4

14 tháng 12 2021

\(\left(2x-1\right)\left(y-2\right)=4\)

\(\Rightarrow2x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Mà \(2x+1\) lẻ

\(\Rightarrow2x+1=\pm1\)

Xét \(2x+1=1\Rightarrow x=0\)

\(\Rightarrow y-2=4\Rightarrow y=6\)

Xét \(2x+1=-1\Rightarrow x=-1\)

\(\Rightarrow y-2=-4\Rightarrow y=-2\)

Trước hết ta thấy rằng nếu có một trong hai số x,y chẵn thì xy chẵn còn 2x+2y+1 là lẻ, do đó 2x+2y+1 không thể chia hết cho xy.

27 tháng 1 2022

Mình thấy chưa chính xác cho lắm bạn ạ!!!

27 tháng 6 2023

a, 2\(xy\) - 2\(x\) + 3\(y\) = -9

(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12

2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12

(\(y-1\))(2\(x\) + 3) = -12

Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

Lập bảng ta có:

\(y\)-1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12
\(y\) -11 -5 -3 -2 -1 0 2 3 4 5 7 13
2\(x\)+3 1 2 3 4 6 12 -12 -6 -4 -3 -2 -1
\(x\) -1 -\(\dfrac{1}{2}\) 0 \(\dfrac{1}{2}\) \(\dfrac{3}{2}\) \(\dfrac{9}{2}\) \(-\dfrac{15}{2}\) \(-\dfrac{9}{2}\) -\(\dfrac{7}{2}\) -3 \(-\dfrac{5}{2}\) -2

Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)

 

  
 

 

 

          

 

    

27 tháng 6 2023

b, (\(x+1\))2(\(y\) - 3) = -4 

    Ư(4) = {-4; -2; -1; 1; 2; 4}

Lập bảng ta có: 

\(\left(x+1\right)^2\) - 4(loại) -2(loại) -1(loại) 1 2 4
\(x\)       0 \(\pm\)\(\sqrt{2}\)(loại) 1; -3
\(y-3\) 1 2 4 -4 -2 -1
\(y\)       -1   2

Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (0; -1); (-3; 2); (1; 2)

 

c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)

28 tháng 9 2019

A = 9x2 + 6x + 15

A = [(3x + 6x + 1] + 14

A = (3x + 1)2 + 14 \(\ge\)14

Dấu = xảy ra \(\Leftrightarrow\)3x + 1 = 0

                        \(\Rightarrow\)3x = - 1

                       \(\Rightarrow\)x = - 1 / 3

Min A = 14 \(\Leftrightarrow\)x = - 1 / 3

26 tháng 11 2018

Sửa lại đề : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

Ta có : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)   \(=\) \(\frac{2x^2+3xy+y^2}{\left(x-y\right)\left(2x^2+3xy+y^2\right)}\)

                                                          \(=\frac{1}{x-y}\)      ( Chia cả tử và mẫu cho \(2x^2+3xy+y^2\))

                

                                                        

29 tháng 4 2023

ĐKXĐ: \(m\ne1\)

Gọi \(\left(d'\right):y+2x-3=0\)

\(\Leftrightarrow\left(d'\right):y=-2x+3\)

Để \(\left(d\right)\perp\left(d'\right)\) thì: \(\left(m-1\right).\left(-2\right)=-1\)

\(\Leftrightarrow-2m+2=-1\)

\(\Leftrightarrow-2m=-3\)

\(\Leftrightarrow m=\dfrac{3}{2}\) (nhận)

\(\Rightarrow\left(d\right):y=\dfrac{1}{2}x+n+2\)

Thay tọa độ điểm A(2; 4) vào (d) ta được:

\(4=\dfrac{1}{2}.2+n+2\)

\(\Leftrightarrow1+n+2=4\)

\(\Leftrightarrow n=4-1-2\)

\(\Leftrightarrow n=1\)

Vậy \(m=\dfrac{3}{2};n=1\)

29 tháng 4 2023
6 tháng 4 2020

Đặt x2 = a (a >= 0) , y2 = b (b >= 0)

Ta có : (a + b)/10 = (a - 2b)/7 và a2b2 = 81

            (a + b)/10 = (a - 2b)/7 = [(a + b) - (a - 2b)]/10 - 7 = 3b/3 = b                  (1)

            (a + b)/10 = (a - 2b)/7 = (2a + 2b)/20 = [(2a + 2b) + (a - 2b)]/(20 + 7) = 3a/27 = a/9          (2)

Từ (1) và (2) => a/9 = b => a = 9b

Do a2b2 = 81 nên (9b)2 . b2 = 81 => 81b4 = 81 => b4 = 1 => b = 1 (vì b >= 0)

Suy ra : a = 9.1 = 9

Ta có : x2 = 9 => x = 3 hoặc x = -3

            y2 = 1 => y = 1 hoặc y = -1

Vậy : ...

P/S : Do bấm công thức Toán nó bị lỗi nên thông cảm

4 tháng 9 2016

a/ A = 3x2 + 6x - 2  => 3A = 9x2 + 18x - 6 = (3x)2 + 2 . 3 . 3x + 32 - 15 = (3x + 3)2 - 15 \(\ge\)-15  => A\(\ge\)5

Đẳng thức xảy ra khi: (3x + 3)2 = 0  => x = -1

Vậy giá trị nhỏ nhất của A là -5 khi x = -1.

b/ B = (x + 1)(2x - 3) + 1 = 2x2 - 3x + 2x - 3 + 1 = 2x2 - x - 2

=> 2B = 4x2 - 2x - 4 = (2x)2 - 2 . 0,5 . 2x + 0,52 - 4,25 = (2x - 0,5)2 - 4,25 \(\ge\)-4,25  => B \(\ge\)-2,125

Đẳng thức xảy ra khi: (2x - 0,5)2 = 0  => x = 0,25

Vậy giá trị nhỏ nhất của B là -2,125 khi x = 0,25.

c/ C = x2 + y2 + 4x - 2y + 1 = x2 + y2 + 4x - 2y + 1 + 22 - 22 = (x2 + 4x + 22) + (y2 - 2y + 1) - 4 = (x + 2)2 + (y - 1)2 - 4 \(\ge\)-4

Đẳng thức xảy ra khi: (x + 2)2 = 0 và (y - 1)2 = 0  => x = -2 và y = 1

Vậy giá trị nhỏ nhất của C là -4 khi x = -2 và y = 1

4 tháng 9 2016

mk làm giúp bn;

A = 3(x+1)2 -3 -2  => GTNN A = -5

B  = 2x2 - x -2 = 2(x - 1/2)2 -1/2 -2   => GTNN B = -5/2

( tisk thì làm tip, k thi nghỉ khỏe)