K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

a, \(\left(x-3\right)\left(2x+5\right)>0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3>0\\2x+5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\2x+5< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>3\\x>-\dfrac{5}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\x< -\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -\dfrac{5}{2}\end{matrix}\right.\)

b,\(\left(1-4x\right)\left(x-2\right)< 0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-4x>0\\x-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-4x< 0\\x-2>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{1}{4}\\x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x>\dfrac{1}{4}\\x>2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x>2\end{matrix}\right.\)

25 tháng 7 2018

c, \(\dfrac{-3}{x+2}< 0\Leftrightarrow x+2>0\Leftrightarrow x>-2\)

a) ĐKXĐ: \(x\ne0\)

Ta có: \(\dfrac{3x^2+7x-10}{x}=0\)

Suy ra: \(3x^2+7x-10=0\)

\(\Leftrightarrow3x^2-3x+10x-10=0\)

\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{10}{3}\right\}\)

21 tháng 2 2021

a/ \(\dfrac{3x^2+7x-10}{x}=0\)

\(< =>3x^2+7x-10=0\)

\(< =>3x^2+10x-3x-10=0\)

\(< =>\left(3x^2+10x\right)-\left(3x+10\right)=0\)

\(< =>x\left(3x+10\right)-\left(3x+10\right)=0\)

\(< =>\left(3x+10\right)\left(x-1\right)=0\)

\(=>\left\{{}\begin{matrix}3x+10=0=>x=-\dfrac{10}{3}\\x-1=0=>x=1\end{matrix}\right.\)

Vậy tập nghiệm của .....

 

 

 

a: =>x^2+4x-4x+1=0

=>x^2+1=0

=>Loại

b: =>2x-6+4=2x+2

=>-2=2(loại)

c: =>2(x+3)-2x-1=1

=>6-1=1

=>5=1(loại)

d =>x+3=0

=>x=-3(loại)

e: =>x^2-3x^2+3x-3x-2=0

=>-2x^2-2=0

=>x^2+1=0

=>Loại

a: =>4x-5=2x-2+x

=>4x-5=3x-2

=>x=3(nhận)

b: =>7x-35=3x+6

=>4x=41

=>x=41/4

d: =>(2x+5)(x+5)-2x^2=0

=>2x^2+10x+5x+25+2x^2=0

=>15x=-25

=>x=-5/3

11 tháng 3 2023

a)

\(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\left(x\ne1\right)\)

suy ra

`4x-5=2(x-1)+x`

`<=>4x-5=2x-2+x`

`<=>4x-2x-x=-2+5`

`<=>x=3(tm)`

b)

\(\dfrac{7}{x+2}=\dfrac{3}{x-5}\left(x\ne-2;x\ne5\right)\)

suy ra

`7(x-5)=3(x+2)`

`<=>7x-35=3x+6`

`<=>7x-3x=6+35`

`<=>4x=41`

`<=>x=41/4(tm)`

c)

\(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\left(x\ne0;x\ne-5\right)\)

suy ra

`(2x+5)(x+5)-2x^2=0`

`<=>2x^2+10x+5x+25-2x^2=0`

`<=>15x=-25`

`<=>x=-5/3(tm)`

26 tháng 6 2021

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$

24 tháng 8 2021

\(a,\left(x-2\right)\left(x-3\right)-3\left(4x-2\right)=\left(x-4\right)^2\\ \Leftrightarrow x^2-5x+6-12x+6=x^2-8x+16\\ \Leftrightarrow-9x-4=0\\ \Leftrightarrow x=-\dfrac{4}{9}\)

\(b,\dfrac{2x^2+1}{8}-\dfrac{7x-2}{12}=\dfrac{x^2-1}{4}-\dfrac{x-3}{6}\\ \Leftrightarrow6x^2+3-14x+4=6x^2-6-4x+12\\ \Leftrightarrow10x=1\\ \Leftrightarrow x=\dfrac{1}{10}\)

\(c,x-\dfrac{2x-2}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\\ \Leftrightarrow30x-12x+12+5x+40=210+10x-10\\ \Leftrightarrow13x=148\\ \Leftrightarrow x=\dfrac{148}{13}\)

 

24 tháng 8 2021

\(d,\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

\(e,x^2-5x+6=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

\(g,2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

\(h,\left(x+\dfrac{1}{x}\right)^2+2\left(x+\dfrac{1}{x}\right)-8=0\left(x\ne0\right)\)

Đặt \(x+\dfrac{1}{x}=t\), pt trở thành:

\(t^2+2t-8=0\\ \Leftrightarrow\left(t-2\right)\left(t+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1-2x=0\\x^2+1+4x=0\left(1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\Delta\left(1\right)=16-4=12>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2+\sqrt{3}\\x=-2-\sqrt{3}\end{matrix}\right.\)

Tick plzz

 

2 tháng 2 2021

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

2 tháng 2 2021

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

21 tháng 12 2018

GIÚP MÌNH VỚI MAI LÀ NỘP BÀI RỒI

23 tháng 12 2018

câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0

c)4x^2+4x+1=0

(2x+1)^2=0

2x+1=0

x=-1/2

a) ĐKXĐ: \(x\ne3\)

Ta có: \(\dfrac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

Suy ra: x+2=0

hay x=-2(thỏa ĐK)

Vậy: S={-2}

d)

ĐKXĐ: \(x\notin\left\{1;3\right\}\)

Ta có: \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\)

Suy ra: \(x^2-3x+5x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+9=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3(loại)

Vậy: \(S=\varnothing\)

11 tháng 3 2023

bạn tách một câu vài câu hỏi chứ đừng gộp như thế này ko ai trả lời đâu

a: =>\(4x-5=2x-2+x=3x-2\)

=>x=3

b: \(\Leftrightarrow7x-35=3x+6\)

=>4x=41

=>x=41/4

c: =>(2x+5)(x+5)-2x^2=0

=>2x^2+10x+5x+25-2x^2=0

=>15x=-25

=>x=-5/3

e: \(\Leftrightarrow\dfrac{11}{x}=\dfrac{9x-36+2x+2}{\left(x+1\right)\left(x-4\right)}\)

=>11(x^2-3x-4)=x(11x-34)

=>11x^2-33x-44=11x^2-34x

=>x=44