CHO N LÀ SỐ NGUYÊN TỐ LỚN HƠN 3 . HỎI N^2+2006 LÀ SỐ NGUYÊN TỐ HAY HỢP SỐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số nguyên tố lớn hơn 3 nên
=>n^2 chia 3 dư 1
=>n^2+2006=3k+1+2006=3k+2007
(3k+2007)chia hết cho3
3k+2007>3
=> 3k+2007 là hợp số
Hay n^2+2006 là hợp số
thì bạn ví dụ số n là số nguyên tố nào đó lớn hơn 3 rồi sau đó thay vào biểu thức là xong
Theo mình nghĩ là số nguyên tố
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
n là số nguyên tố lớn hơn 3 nên không chia hết cho 3 .
Vậy n2 chia cho 3 dư 1 tức là n2 = 3k + 1
Do đó n2 + 2006 = 3k + 1 + 2006 = 3k + 2007 chia hết cho 3 .
Vậy n2 + 2006 là hợp số .
Vì 2006 là hợp số, mà n là số nguyên tố lớn hơn 3 nên n là số lẻ>3, mà số lẻ2=số lẻ
=>2006+số lẻ=số lẻ là số nguyên tố
mk cũng k chắc về bài này lắm
ta sẽ có số thay : 5;7;11
Từ đó ta có: +5^2+2006=10+2006=2016 => là hợp số
+7^2+2006=14+2006=2020=>là hợp số
+11^2+2006=22+2006=2028=>là hợp số
Từ 3 ví dụ trên ta tháy nếu n là số nguyên tố >3 thì n^2 +2006 là hợp số
vì n là số nguên tố lớn hơn 3
suy ra n chia 3 dư 1 và chia 3 dư 2
suy ra n^2 chia 3 dư 1
mà 2006 chia 3 dư 2
suy ra n^2+2006=3k+1+668*3+2
suy ra 3(k+669) chia hết cho 3
suy ra n^2+2006 là hợp số
HOẶC BẠN CÓ THỂ LÀM THEO CÁCH ĐỒNG DƯ THÌ NHANH HƠN
Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số
Số nguyên tố lớn hơn 3 có dạng 3k + 1 hoặc 3k + 2 (k \(\in\) N)
Với n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 1 + 2006 = 9k2 + 2007 = 9.(k2 + 223) chia hết cho 9, là hợp số.
Với n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 4 + 2006 = 9k2 + 2010 = 3.(3k2 + 670) chia hết cho 3, là hợ số.
Vậy n2 + 2006 là hợp số.
Vì n là số nguyên tố lớn hơn 3 nên n không chia hết cho 3
hay n=3k+1 hoặc n=3k+2(k∈N)
Thay n=3k+1 vào \(n^2+2006\), ta được:
\(\left(3k+1\right)^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)⋮3\)(1)
Thay n=3k+2 vào \(n^2+2006\), ta được:
\(\left(3k+2\right)^2+2006=9k^2+6k+2010=3\left(3k^2+2k+670\right)⋮3\)(2)
Từ (1) và (2) suy ra \(n^2+2006\) là hợp số
vi n la so nguyen to lon hon 3 nen n khong chia het cho 3
=> n= 3k+1 hoac 3k+2(k thuoc N*)
- Xet n=3k+1 thi n2+2006 =(3k+1)2+2006
=9k2+1+2006
=9k2+2007
=3(3k2+669)
=>n2+2006 co it nhat 3 uoc la 1 ;3va chinh no nen n2+2006 la hop so (1)
- Xet n=3k+2 thi n2+2006=(3k+2)2+2006
=9k2+4+2006
= 9k2+2010
= 3(3k2+670)
=>n2 co it nhat 3 uoc la 1;3 va chinh no nen n2+2006 la hop so (2)
tu (1) va (2) => n2+2006 la hop so
n la so nguyen to lon hon 3
- neu n=5 thi n2+2006=2031(la so nguyen to.loai)
- neu n= 7 thi n2+2006=2055(la hop so ,chon)
- neu n>7 thi n khong chia het cho 7
=>n= 7k+1; 7k+2 ; 7k+3 ; 7k+4 ; 7k+4 ; 7k+5 hoac 7k+6
- xet n=7k+1 thi n2+2006=(7k+1)2+2006
=49k2+1+2006
=49k2+2007
vi 49k2 va 2007 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to (loai)
- xet n=7k+2 thi n2+2006=(7k+2)2+2006
= 49k2+4+2006
= 49k2+2010
vi 49k2 va 2010 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to (loai)
- xet n=7k+3 thi n2+2006= (7k+3)2+2006
= 49k2+9+2006
= 49k2+2015
vi 49k2 va 2015 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+4 thi n2+2006=(7k+4)2+2006
= 49k2 + 16+2006
= 49k2+2022
vi 49k2 va 2022 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+5 thi n2+2006 =(7k+5)2+2006
= 49k2+25+2006
= 49k2 +2031
vi 49k2 va 2031 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
- xet n=7k+6 thi n2+2006 =(7k+6)2+2006
=49k2+36+2006
=49k2+2042
vi 49k2 va 2042 khong cung chia het cho so nao khac 1 nen n2+2006 la so nguyen to(loai)
=>n>7 bi loai
=> n=7
vay n=7 va n2+2006 la hop so
Vì N nguyên tố và N > 3 \(\Rightarrow n=3k+1;3k+2\)
Xét n = 3k+1
\(n^2=\left(3k+1\right)^2=9k^2+6k+1\)
\(n^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)\)là hợp số
Xét n = 3k+2
\(n^2=\left(3k+2\right)^2=9k^2+12k+4\)
\(n^2+2006=9k^2+12k+2010=3\left(3k^2+4k+670\right)\)là hợp số
hợp số